Applied Psychophysiology and Biofeedback

, Volume 39, Issue 3–4, pp 237–257 | Cite as

Neuromodulation Integrating rTMS and Neurofeedback for the Treatment of Autism Spectrum Disorder: An Exploratory Study

  • Estate M. SokhadzeEmail author
  • Ayman S. El-Baz
  • Allan Tasman
  • Lonnie L. Sears
  • Yao Wang
  • Eva V. Lamina
  • Manuel F. Casanova


Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by deficits in social interaction, language, stereotyped behaviors, and restricted range of interests. In previous studies low frequency repetitive transcranial magnetic stimulation (rTMS) has been used, with positive behavioral and electrophysiological results, for the experimental treatment in ASD. In this study we combined prefrontal rTMS sessions with electroencephalographic (EEG) neurofeedback (NFB) to prolong and reinforce TMS-induced EEG changes. The pilot trial recruited 42 children with ASD (~14.5 years). Outcome measures included behavioral evaluations and reaction time test with event-related potential (ERP) recording. For the main goal of this exploratory study we used rTMS-neurofeedback combination (TMS-NFB, N = 20) and waitlist (WTL, N = 22) groups to examine effects of 18 sessions of integrated rTMS-NFB treatment or wait period) on behavioral responses, stimulus and response-locked ERPs, and other functional and clinical outcomes. The underlying hypothesis was that combined TMS-NFB will improve executive functions in autistic patients as compared to the WTL group. Behavioral and ERP outcomes were collected in pre- and post-treatment tests in both groups. Results of the study supported our hypothesis by demonstration of positive effects of combined TMS-NFB neurotherapy in active treatment group as compared to control WTL group, as the TMS-NFB group showed significant improvements in behavioral and functional outcomes as compared to the WTL group.


Autism spectrum disorder Transcranial magnetic stimulation (TMS) Neurofeedback EEG gamma activity Theta/beta ratio Executive functions 



The study was partially supported by National Institutes of Health Eureka R01 Grant MH86784 to Manuel F. Casanova.


  1. Aman, M. G. (2004). Management of hyperactivity and other acting out problems in patients with autism spectrum disorder. Seminars in Pediatric Neurology, 11, 225–228.PubMedGoogle Scholar
  2. Aman, M. G., & Singh, N. N. (1994). Aberrant behavior checklist—community. Supplementary manual. East Aurora, NY: Slosson Educational Publications.Google Scholar
  3. American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders, forth edition, Text Revision, Washington, D.C.Google Scholar
  4. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
  5. Arns, M., de Ridder, S., Strehal, U., Breteler, M., & Coenen, A. (2009). Efficacy of neurofeedback treatment in ADHD: The effects on inattention, impulsivity and hyperactivity: A meta-analysis. Clinical EEG and Neuroscience, 40, 180–189.PubMedGoogle Scholar
  6. Baron-Cohen, S. (2004). The cognitive neuroscience of autism. Journal of Neurology and Neurosurgery Psychiatry, 75(7), 945–948.Google Scholar
  7. Baruth, J., Casanova, M. F., El-Baz, A., Horrell, T., Mathai, G., Sears, L., et al. (2010a). Low-frequency repetitive transcranial magnetic stimulation modulates evoked-gamma frequency oscillations in autism spectrum disorders. Journal of Neurotherapy, 14(3), 179–194.PubMedCentralPubMedGoogle Scholar
  8. Baruth, J., Casanova, M. F., Sears, L., & Sokhadze, E. (2010b). Early-stage visual processing abnormalities in high-functioning autism spectrum disorder (ASD). Translational Neuroscience, 1(2), 177–187.PubMedCentralPubMedGoogle Scholar
  9. Baruth, J., Sokhadze, E., El-Baz, A., Mathai, G., Sears, L., & Casanova, M. F. (2010c). Transcaranial magentic stimulation as a treatment for autism. In K. Siri & T. Lyons (Eds.), Cutting edge therapies for autism (pp. 388–397). New York: Skyhorse Publishing.Google Scholar
  10. Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. Journal of Neurosciences, 24(42), 9228–9231.Google Scholar
  11. Belmonte, M. K., & Yurgelun-Todd, D. A. (2003). Functional anatomy of impaired selective attention and compensatory processing in autism. Brain Research. Cognitive Brain Research, 17, 651–664.PubMedGoogle Scholar
  12. Bird, B. L., Newton, F. A., Sheer, D. E., & Ford, M. (1978a). Biofeedback training of 40-Hz EEG in humans. Biofeedback and Self-Regulation, 3(1), 1–14.PubMedGoogle Scholar
  13. Bird, B. L., Newton, F. A., Sheer, D. E., & Ford, M. (1978b). Behavioral and electroencephalographic correlates of 40 Hz EEG biofeedback training in humans. Biofeedback and Self-Regulation, 3, 13–28.PubMedGoogle Scholar
  14. Bodfish, J. W., Symons, F. J., & Lewis, M. H. (1999). Repetitive behavior scale. Morganton, NC: Western Carolina Center Research Reports.Google Scholar
  15. Bodfish, J. W., Symons, F. S., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: Comparisons to mental retardation. Journal of Autism and Developmental Disorders, 30, 237–243.PubMedGoogle Scholar
  16. Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Developmental Psychopathology, 14(2), 209–224.Google Scholar
  17. Brown, C. (2005). EEG in autism: Is there just too much going on in there? In M. F. Casanova (Ed.), Recent developments in autism research (pp. 109–126). New York: Nova Science Publishers.Google Scholar
  18. Brown, C., Gruber, T., Boucher, J., Rippon, G., & Brock, J. (2005). Gamma abnormalities during perception of illusory figures in autism. Cortex, 41(3), 364–376.PubMedGoogle Scholar
  19. Buxhoeveden, D. P., Semendeferi, K., Buckwalter, J., Schenker, N., Switser, R., & Courchesne, E. (2006). Reduced minicolumns in the frontal cortex of patients with autism. Neuropathology and Applied Neurobiology, 32(5), 483–491.PubMedGoogle Scholar
  20. Casanova, M. F. (2005). Minicolumnar pathology in autism. In M. F. Casanova (Ed.), Recent developments in autism research (pp. 133–144). New York: Nova Biomedical Books.Google Scholar
  21. Casanova, M. F. (2006). Neuropathological and genetic findings in autism: The significance of a putative minicolumnopathy. Neuroscientist, 12(5), 435–441.PubMedGoogle Scholar
  22. Casanova, M. F. (2007). The neuropathology of autism. Brain Pathology, 17, 422–433.PubMedGoogle Scholar
  23. Casanova, M. F., Baruth, J., El-Baz, A., Tasman, A., Sears, L., & Sokhadze, E. (2012). Repetitive transcranial magnetic stimulation (rTMS) modulates event-related potential (ERP) indices of attention in autism. Translational Neuroscience, 3(2), 170–180.PubMedCentralPubMedGoogle Scholar
  24. Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002a). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17, 692–695.PubMedGoogle Scholar
  25. Casanova, M. F., Buxhoeveden, D., & Gomez, J. (2003). Disruption in the inhibitory architecture of the cell minicolumn: Implications for autism. Neuroscientist, 9, 496–507.PubMedGoogle Scholar
  26. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002b). Minicolumnar pathology in autism. Neurology, 58, 428–432.PubMedGoogle Scholar
  27. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002c). Asperger’s syndrome and cortical neuropathology. Journal of Child Neurology, 17, 142–145.PubMedGoogle Scholar
  28. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002d). Neuronal density and architecture (Gray Level Index) in the brains of autistic patients. Journal of Child Neurology, 17(7), 515–521.PubMedGoogle Scholar
  29. Casanova, M. F., El-Baz, A. S., Kamat, S. S., Dombroski, B. A., Khalifa, F., Elnakib, A., et al. (2014). Focal cortical displasias in autism spectrum disorders. Acta Neuropathoogy Communications, 1(1), 67. doi: 10.1186/2051-5960-1-67.Google Scholar
  30. Casanova, M. F., El-Baz, A. S., Vanbogaert, E., Narahari, P., & Switala, A. (2010). A topographical study of minicolumnar core width by lamina comparison between autistic subjects and controls: Possible minicolumnar disruption due to an anatomical element in-common to multiple laminae. Brain Pathology, 20(2), 451–458.PubMedGoogle Scholar
  31. Casanova, M. F., & Trippe, J. (2006). Regulatory mechanisms of cortical laminar development. Brain Research Reviews, 51(1), 72–84.PubMedGoogle Scholar
  32. Casanova, M. F., van Kooten, I., Switala, A. E., van England, H., Heinsen, H., Steinbuch, H. W. M., et al. (2006a). Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clinical Neuroscience Reseacrh, 6(3–4), 127–133.Google Scholar
  33. Casanova, M. F., van Kooten, I., van Engeland, H., Heinsen, H., Steinbursch, H. W. M., Hof, P. R., et al. (2006b). Minicolumnar abnormalities in autism II. Neuronal size and number. Acta Neuropathologica, 112(3), 287–303.PubMedGoogle Scholar
  34. Clemans, Z., Sokhadze, T., & El-Baz, A. (2011a). Custom program for extraction of event-related potential peaks in attention tasks. Presented at Research Louisville, October 11, Louisville, KY.Google Scholar
  35. Clemans, Z., Sokhadze, E., & El-Baz, A. S. (2011b). A custom-made Matlab program for ERP feature detection in psychological and physiological disorders using wavelet. Presented at the 97th annual meeting of Kentucky Academy of Science, Murray, KY, November 4–5.Google Scholar
  36. Coben, R. (2008). Autistic spectrum disorder: A controlled study of EEG coherence training focused on social skills deficits. Journal of Neurotherapy, 12, 57–75.Google Scholar
  37. Coben, R. (2013). Neurofeedback for autistic disorders: Emerging empirical evidence. In M. F. Casanova, A. S. El-Baz, & J. S. Suri (Eds.), Imaging the brain in autism (pp. 107–134). New York: Springer.Google Scholar
  38. Coben, R., Linden, M., & Myers, T. E. (2010). Neurofeedback for autistic spectrum disorder: A review of the literature. Applied Psychophysiology and Biofeedback, 35(1), 83–105.PubMedGoogle Scholar
  39. Coben, R., & Myers, T. E. (2010). The relative efficacy of connectivity guided and symptom based EEG biofeedback for autistic disorders. Applied Psychophysiology and Biofeedback, 35, 13–23.PubMedGoogle Scholar
  40. Coben, R., & Padolsky, J. (2007). Assessment-guided neurofeedback for autistic spectrum disorders. Journal of Neurotherapy, 11, 5–23.Google Scholar
  41. Courchesne, E., Lincoln, A. J., Yeung-Courchesne, R., Elmasian, R., & Grillon, C. (1989). Pathophysiologic findings in nonretarded autism and receptive developmental disorder. Journal of Autism and Developmental Disorders, 19, 1–17.PubMedGoogle Scholar
  42. Daskalakis, Z. J., Christensen, B. K., Fitzgerald, P. B., & Chen, R. (2002). Transcranial magnetic stimulation: A new investigational and treatment tool in psychiatry. Journal Neuropsychiatry Clininical Neuroscience., 14, 406–415.Google Scholar
  43. Donner, T. H., & Siegel, M. (2011). A framework for local cortical oscillation patterns. Trends in Cognitive Sciences, 15(5), 191–199.PubMedGoogle Scholar
  44. Enriquez-Geppert, S., Konrad, C., Pantev, C., & Huster, R. J. (2010). Conflict and inhibition differentially affect the N200/P300 complex in a combined go/nogo and stop-signal task. Neuroimage, 51, 877–887.PubMedGoogle Scholar
  45. Enticott, P. G., Kennedy, H. A., Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., & Fitzgerald, P. B. (2013). GABAergic activity in autism spectrum disorders: An investigation of cortical inhibition via transcranial magnetic stimulation. Neuropharmacology, 68, 202–209.PubMedGoogle Scholar
  46. Enticott, P. G., Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., & Fitzgerald, P. B. (2010). A preliminary transcranial magnetic stimulation study of cortical inhibition and excitability in high-functioning autism and Asperger disorder. Developmental Medicine and Child Neurology, 52, e179–e183.PubMedGoogle Scholar
  47. Enticott, P. G., Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., & Fitzgerald, P. B. (2012). Repetitive transcranial magnetic stimulation (rTMS) improves movement-related cortical potentials in autism spectrum disorders. Brain Stimulation, 5(1), 30–37.PubMedGoogle Scholar
  48. Fecteau, S., Agosta, S., Oberman, L., & Pascual-Leone, A. (2011). Brain stimulation over Broca’s area differentially modulates naming skills in neurotypical adults and individuals with Asperger’s syndrome. European Journal of Neuroscience, 34(1), 158–164.PubMedCentralPubMedGoogle Scholar
  49. Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000). Executive attention and metacognitive regulation. Consciousness and Cognition, 9, 288–307.PubMedGoogle Scholar
  50. Fletcher, E. M., Kussmaul, C. L., & Mangun, G. R. (1996). Estimation of interpolation errors in scalp topographic mapping. Electroctoencephalography and Clinical Neurophysiology., 98, 422–434.Google Scholar
  51. Ford, M., Bird, B., Newton, F. A., & Sheer, D. E. (1980). Maintenance and generalization of 40-Hz EEG biofeedback effects. Biofeedback and Self-Regulation, 5(2), 193–205.PubMedGoogle Scholar
  52. Gershon, A. A., Dannon, P. N., & Grunhaus, L. (2003). Transcranial magnetic stimulation in the treatment of depression. American Journal of Psychiatry, 160, 835–845.PubMedGoogle Scholar
  53. Gevensleben, H., Holl, B., Albrecht, B., Vogel, C., Schlamp, D., et al. (2009). Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. Journal of Child Psychology and Psychiatry, 50, 780–789.PubMedGoogle Scholar
  54. Gomes, E., Pedroso, F. S., & Wagner, M. B. (2008). Auditory hypersensitivity in the autistic spectrum disorder. Pró-Fono Revista de Atualização Científica, 20, 279–284.PubMedGoogle Scholar
  55. Gomot, M., Giard, M. H., Adrien, J. L., Barthelemy, C., & Bruneau, N. (2002). Hypersensitivity to acoustic change in children with autism: Electrophysiological evidence of left frontal cortex dysfunctioning. Psychophysiology, 39, 577–584.PubMedGoogle Scholar
  56. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.PubMedGoogle Scholar
  57. Greenberg, B. D. (2007). Transcranial magnetic stimulation in anxiety disorders. In M. S. George & R. H. Belmaker (Eds.), Transcranial magnetic stimulation in clinical psychiatry (pp. 165–178). Washington, DC: American Psychiatric Publishing Inc.Google Scholar
  58. Gruber, T., Muller, M. M., Keil, A., & Elbert, T. (1999). Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiolology, 110(12), 2074–2085.Google Scholar
  59. Hensley, M. K., El-Baz, A. S., Sokhadze, E. M., Sears, L., & Casanova, M. F. (2014). Effects of 18 session therapy of gamma coherence in autism. Psychophysiology, 51, S16.Google Scholar
  60. Hill, E. L. (2004). Evaluating the theory of executive dysfunction in autism. Developmental Review, 24, 189–233.Google Scholar
  61. Hussman, J. P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. Journal of Autism and Developmental Disorders, 31, 247–248.Google Scholar
  62. Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neurosciences, 7(12), 942–951.Google Scholar
  63. Jarusiewicz, B. (2002). Efficacy of neurofeedback for children in the autistic spectrum: A pilot study. Journal of Neurotherapy, 6(4), 39–49.Google Scholar
  64. Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends Neurosciences, 30(7), 317–324.Google Scholar
  65. Kahana, M. (2006). The cognitive correlates of human brain oscillations. Journal of Neurosciences, 26(6), 1669–1672.Google Scholar
  66. Kanizsa, G. (1976). Subjective contours. Scientific American, 235, 48–52.Google Scholar
  67. Keil, A., Muller, M. M., Ray, W. J., Gruber, T., & Elbert, T. (1999). Human gamma band activity and perception of a gestalt. Journal of Neurosciences, 19(16), 7152–7161.Google Scholar
  68. Keita, L., Mottron, L., Dawson, M., & Bertone, A. (2011). Atypical lateral connectivity: A neural basis for altered visuospatial processing in autism. Biological Psychiatry, 70(9), 806–811.PubMedGoogle Scholar
  69. Kouijzer, M., de Moor, J. M. H., Gerrits, B. J., Congedo, M., & van Schie, H. (2009a). Neurofeedback improves executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 3, 145–162.Google Scholar
  70. Kouijzer, M., de Moor, J. M. H., Gerrits, B. J., Congedo, M., & van Schie, H. (2009b). Long-term effects of neurofeedback treatment in autism. Research in Autism Spectrum Disorders, 3, 496–501.Google Scholar
  71. Lam, K. S., & Aman, M. G. (2007). The repetitive behavior scale-revised: Independent validation in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(5), 855–866.PubMedGoogle Scholar
  72. Le Couteur, A., Lord, C., & Rutter, M. (2003). The autism diagnostic interview—revised (ADI-R). Los Angeles, CA: Western Psychological Services.Google Scholar
  73. Linden, M., & Gunkelman, J. (2013). QEEG-guided neurofeedback for autism: Clinical observations and outcomes. In M. F. Casanova, A. S. El-Baz, & J. S. Suri (Eds.), Imaging the brain in autism (pp. 45–60). New York: Springer.Google Scholar
  74. Loo, C., & Mitchell, P. (2005). A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. Journal of Affective Disorders, 88, 255–267.PubMedGoogle Scholar
  75. Lubar, J. F. (2003). Neurofeedback for the management of attention deficit disorders. In M. S. Schwartz & F. Andrasik (Eds.), Biofeedback: A practitioner’s guide (3rd ed., pp. 409–437). New York: Guilford Press.Google Scholar
  76. Luu, P., Tucker, D. M., Englander, R., Lockfeld, A., Lutsep, H., & Oken, B. (2001). Localizing acute stroke-related EEC changes: Assessing the effects of spatial undersampling. Journal of Clinical Neurophysiology, 18, 302–317.PubMedGoogle Scholar
  77. Mann, E. O., & Paulsen, O. (2007). Role of GABAergic inhibition in hippocampal network oscillations. Trends in Neurosciences, 30(7), 343–349.PubMedGoogle Scholar
  78. Matzel, L. D., & Kolata, S. (2010). Selective attention, working memory, and animal intelligence. Neuroscience Biobehavioral Reviews, 34, 23–30.PubMedCentralPubMedGoogle Scholar
  79. Mesulam, M. M. (2000). Behavioral neuroanatomy: Large-networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In M. M. Mesulam (Ed.), Principles of behavioral and cognitive neurology (2nd ed., pp. 1–120). New York: Oxford University Press.Google Scholar
  80. Monastra, V. J. (2005). Electroencephalographic biofeedback (neurotherapy) as a treatment for attention deficit hyperactivity disorder: Rationale and empirical foundation. Child Adolescent Psychiatry Clinic North America, 14, 55–82.Google Scholar
  81. Monastra, V. J. (2008). Quantitative electroencephalography and attention-deficit/hyperactivity disorder: Implications for clinical practice. Current Psychiatry Reports, 10, 432–438.PubMedGoogle Scholar
  82. Murphy, K. R., & Myors, B. (2004). Statistical power analysis. A simple and general model for traditional and modern hypothesis tests (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  83. Oberman, L. M., Hubbard, E. M., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Brain Research. Cognitive Brain Research, 24(2), 190–198.PubMedGoogle Scholar
  84. Oberman, L., Ifert-Miller, F., Najib, U., Bashir, S., Woollacott, I., Gonzalez-Heydrich, J., et al. (2010). Transcranial magnetic stimulation provides means to assess cortical plasticity and excitability in humans with fragile X syndrome and autism spectrum disorder. Frontiers System Neuroscience, 2, 26. doi: 10.3389/fnsyn.2010.00026.Google Scholar
  85. Oberman, L. M., Ramachandran, V. S., & Pineda, J. A. (2008). Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia, 46(5), 1558–1565.PubMedGoogle Scholar
  86. Oberman, L., Rotenberg, A., & Pascual-Leone, A. (2013). Use of transcranial magnetic stimulation in autism spectrum disorders. Journal of Autism and Developmental Disorders. Oct 15. (Epub ahead of print). doi: 10.1007/s10803-013-960-2.
  87. Ozonoff, S. (1997). Casual mechanisms of autism: Unifying perspectives from an information-processing framework. In D. J. Cohen & F. R. Volkmar (Eds.), Handbook of autism and pervasive developmental disorders (pp. 868–879). New York: Wiley.Google Scholar
  88. Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Current Opinions in Neurobiololgy, 10, 232–237.Google Scholar
  89. Perrin, E., Pernier, J., Bertrand, O., Giard, M., & Echallier, J. F. (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66, 75–81.PubMedGoogle Scholar
  90. Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456–479.PubMedGoogle Scholar
  91. Plaisted, K., Saksida, L., Alcantara, J., & Weisblatt, E. (2003). Towards an understanding of the mechanisms of weak central coherence effects: Experiments in visual configural learning and auditory perception. Proceedings Royal Society (London), 358, 375–386.Google Scholar
  92. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Journal of Clinical Neurophysiology, 118, 2128–2148.Google Scholar
  93. Potts, G. F., Patel, S. H., & Azzam, P. N. (2004). Impact of instructed relevance on the visual ERP. International Journal of Psychophysiology, 52, 197–209.PubMedGoogle Scholar
  94. Puts, N. A., Wodka, E. L., Tommerdahl, M., Mostofsky, S. H., & Edden, R. A. (2014). Impaired tactile processing in children with autism spectrum disorder. Journal of Neurophysiology, 111(9), 1803–1811.PubMedGoogle Scholar
  95. Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the “new psychophysiology”. International Journal of Psychophysiology, 63(2), 164–172.PubMedGoogle Scholar
  96. Rubenstein, J. L. R., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genetics Brain Behavior, 2, 255–267.Google Scholar
  97. Sherlin, L., Arns, M., Lubar, J., & Sokhadze, E. (2010). A position paper on neurofeedback for the treatment of ADHD. Journal of Neurotherapy, 14, 66–78.Google Scholar
  98. Sichel, A., Fehmi, L. G., & Goldstein, D. (1995). Positive outcome with neurofeedback treatment in a case of mild autism. Journal of Neurotherapy, 1(1), 60–64.Google Scholar
  99. Sohal, V. S. (2012). Insights into cortical oscillations arising from optogenetic studies. Biological Psychiatry, 71(12), 1039–1045.PubMedCentralPubMedGoogle Scholar
  100. Sokhadze, E., Baruth, J., El-Baz, A., Horrell, T., Sokhadze, G., Carroll, T., et al. (2010a). Impaired error monitoring and correction function in autism. Journal of Neurotherapy, 14, 79–95.PubMedCentralPubMedGoogle Scholar
  101. Sokhadze, E., Baruth, J. M., Sears, L., Sokhadze, G. E., El-Baz, A. S., & Casanova, M. F. (2012a). Prefrontal neuromodulation using rTMS improves error monitoring and correction functions in autism. Applied Psychophysiology and Biofeedback, 37(2), 91–102.PubMedGoogle Scholar
  102. Sokhadze, E., Baruth, J. M., Sears, L., Sokhadze, G. E., El-Baz, A. S., Williams, E. L., et al. (2012b). Event-related potential study of attention regulation during illusory figure categorization task in ADHD, autism spectrum disorder, and typical children. Journal of Neurotherapy, 16(1), 12–31.PubMedCentralPubMedGoogle Scholar
  103. Sokhadze, E. M., Baruth, J., Tasman, A., & Casanova, M. F. (2013a). Event-related potential studies of cognitive processing abnormalities in autism. In M. F. Casanova, A. El-Baz, & J. S. Suri (Eds.), Imaging methods in autism (pp. 61–86). New York: Springer.Google Scholar
  104. Sokhadze, E., Baruth, J., Tasman, A., Mansoor, M., Ramaswamy, R., Sears, L., et al. (2010b). Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism. Applied Psychophysiology and Biofeedback, 35, 147–161.PubMedCentralPubMedGoogle Scholar
  105. Sokhadze, E., Baruth, J., Tasman, A., Sears, L., Mathai, G., El-Baz, A., et al. (2009a). Event-related potential study of novelty processing abnormalities in autism. Applied Psychophysiology and Biofeedback, 34, 37–51.PubMedGoogle Scholar
  106. Sokhadze, E. M., Cannon, R., & Trudeau, D. L. (2008). EEG biofeedback as a treatment for substance use disorders: Review, rating of efficacy and recommendations for future research. Applied Psychophysiology and Biofeedback, 33(1), 1–28.PubMedCentralPubMedGoogle Scholar
  107. Sokhadze, E. M., Casanova, M. F., & Baruth, J. (2013b). Transcranial magnetic stimulation in autism spectrum disorders. In L. Alba-Ferrara (Ed.), Transcranial magnetic stimulation: Methods, clinical uses and effect on the brain (pp. 219–231). New York: NOVA Publishers.Google Scholar
  108. Sokhadze, E., El-Baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009b). Effect of a low-frequency repetitive transcranial magnetic stimulation (rTMS) on induced gamma frequency oscillations and event-related potentials during processing of illusory figures in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39, 619–634.PubMedGoogle Scholar
  109. Sokhadze, E. M., El-Baz, A. S., Sears, L. L., Opris, I., & Casanova, M. F. (2014). rTMS neuromodulation improves electrocortical functional measures of information processing and behavioral responses in autism. Frontiers in Systems Neuroscience. 8, Article 134. doi: 10.3389/fnsys.2014.00134.
  110. Sokhadze, E., Stewart, C., & Hollifield, M. (2007). Integrating cognitive neuroscience, psychiatry and behavioral treatment with neurofeedback in addictive disorders. Journal of Neurotherapy, 11(2), 13–44.Google Scholar
  111. Srinivasan, R., Tucker, D. M., & Murias, M. (1998). Estimating the spatial Nyquist of the human EEG. Behavioral Research Methods, Instrumentation and Computers, 30, 8–19.Google Scholar
  112. Szentagothai, J., & Arbib, M. A. (1975). Conceptual models of neural organization. Cambridge, MA: MIT Press.Google Scholar
  113. Tallon-Baudry, C., Bertrand, O., Henaff, M. A., Isnard, J., & Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cerebral Cortex, 15(5), 654–662.PubMedGoogle Scholar
  114. Thompson, L., Thompson, M., & Reid, A. (2010). Neurofeedback outcomes in clients with Asperger’s syndrome. Applied Psychophysiology and Biofeedback, 35, 63–81.PubMedGoogle Scholar
  115. Townsend, J., Westerfield, M., Leaver, E., Makeig, S., Jung, T., Pierce, K., et al. (2001). Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networks. Brain Research. Cognitive Brain Research, 11, 127–145.PubMedGoogle Scholar
  116. Tuchman, R. F., & Rapin, I. (1997). Regression in pervasive developmental disorders: Seizures and epileptiform electroencephalogram correlates. Pediatrics, 99(4), 560–566.PubMedGoogle Scholar
  117. Villalobos, M. E., Mizuno, A., Dahl, B. C., Kemmotsu, N., & Muller, R.-A. (2005). Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. NeuroImage, 25, 916–925.PubMedCentralPubMedGoogle Scholar
  118. Wang, Y., El-Baz, A., Sears, L., Casanova, M. F., Tasman, A., & Sokhadze, E. (2014). Prefrontal neurofeedback approaches in autism. San Diego, CA: Presented at the ISNR annual conference.Google Scholar
  119. Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends in Cognitive Sciences, 7(12), 553–559.PubMedGoogle Scholar
  120. Wassermann, E. M., & Lisanby, S. H. (2001). Therapeutic application of repetitive transcranial magnetic stimulation: A review. Clinical Neurophysiology, 112, 1367–1377.PubMedGoogle Scholar
  121. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: Harcourt Assessment Inc.Google Scholar
  122. Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment Inc.Google Scholar
  123. Welchew, D. E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J., Baron-Cohen, S., et al. (2005). Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biological Psychiatry, 57, 991–998.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Estate M. Sokhadze
    • 1
    Email author
  • Ayman S. El-Baz
    • 1
  • Allan Tasman
    • 1
  • Lonnie L. Sears
    • 1
  • Yao Wang
    • 1
  • Eva V. Lamina
    • 1
  • Manuel F. Casanova
    • 1
  1. 1.University of LouisvilleLouisvilleUSA

Personalised recommendations