The Effects of Individual Upper Alpha Neurofeedback in ADHD: An Open-Label Pilot Study

Abstract

Standardized neurofeedback (NF) protocols have been extensively evaluated in attention-deficit/hyperactivity disorder (ADHD). However, such protocols do not account for the large EEG heterogeneity in ADHD. Thus, individualized approaches have been suggested to improve the clinical outcome. In this direction, an open-label pilot study was designed to evaluate a NF protocol of relative upper alpha power enhancement in fronto-central sites. Upper alpha band was individually determined using the alpha peak frequency as an anchor point. 20 ADHD children underwent 18 training sessions. Clinical and neurophysiological variables were measured pre- and post-training. EEG was recorded pre- and post-training, and pre- and post-training trials within each session, in both eyes closed resting state and eyes open task-related activity. A power EEG analysis assessed long-term and within-session effects, in the trained parameter and in all the sensors in the (1–30) Hz spectral range. Learning curves over sessions were assessed as well. Parents rated a clinical improvement in children regarding inattention and hyperactivity/impulsivity. Neurophysiological tests showed an improvement in working memory, concentration and impulsivity (decreased number of commission errors in a continuous performance test). Relative and absolute upper alpha power showed long-term enhancement in task-related activity, and a positive learning curve over sessions. The analysis of within-session effects showed a power decrease (“rebound” effect) in task-related activity, with no significant effects during training trials. We conclude that the enhancement of the individual upper alpha power is effective in improving several measures of clinical outcome and cognitive performance in ADHD. This is the first NF study evaluating such a protocol in ADHD. A controlled evaluation seems warranted due to the positive results obtained in the current study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    DSM was recently updated to the fifth edition (DSM-5).

References

  1. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Press.

  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.

  3. Arns, M., Gunkelman, J., Breteler, M., & Spronk, D. (2008). EEG phenotypes predict treatment outcome to stimulants in children with ADHD. Journal of Integrative Neuroscience, 7(03), 421–438.

    PubMed  Article  Google Scholar 

  4. Arns, M., de Ridder, S., Strehl, U., Breteler, M., & Coenen, A. (2009). Efficacy of neurofeedback treatment in ADHD: The effects on inattention, impulsivity and hyperactivity: A meta-analysis. Clinical EEG and Neuroscience, 40(3), 180–189.

    PubMed  Article  Google Scholar 

  5. Arns, M., Drinkenburg, W., & Kenemans, J. L. (2012). The effects of QEEG-informed neurofeedback in ADHD: An open-label pilot study. Applied Psychophysiology and Biofeedback, 37(3), 171–180.

    PubMed Central  PubMed  Article  Google Scholar 

  6. Arns, M., Conners, C. K., & Kraemer, H. C. (2013). A decade of EEG theta/beta ratio research in ADHD: A meta-analysis. Journal of Attention Disorders, 17(5), 374–383.

    PubMed  Article  Google Scholar 

  7. Arns, M., Heinrich, H., & Strehl, U. (2014). Evaluation of neurofeedback in ADHD: The long and winding road. Biological Psychology, 95(0):108–115. (Society of Applied Neuroscience) Special issue on Neurofeedback.

  8. Barachant, A., Bonnet, S., Congedo, M., & Jutten, C. (2012). Multiclass brain-computer interface classification by Riemannian geometry. IEEE Transactions on Biomedical Engineering, 59(4), 920–928.

    PubMed  Article  Google Scholar 

  9. Barachant, A., Andreev, A., & Congedo, M. (2013). The Riemannian Potato: An automatic and adaptive artifact detection method for online experiments using Riemannian geometry. In Proceedings of TOBI workshop IV, pp. 19–20.

  10. Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65.

    PubMed  Article  Google Scholar 

  11. Barry, R. J., Clarke, A. R., & Johnstone, S. J. (2003). A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clinical Neurophysiology, 114(2), 171–183.

    PubMed  Article  Google Scholar 

  12. Brickenkamp, R., & Zillmer, E. (1998). The d2 test of attention. Seattle, WA: Hogrefe & Huber Publishers.

    Google Scholar 

  13. Castellanos, F. X., & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nature Reviews Neuroscience, 3(8), 617–628.

    PubMed  Google Scholar 

  14. Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001). EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 112(11), 2098–2105.

    PubMed  Article  Google Scholar 

  15. Clarke, A. R., Barry, R. J., Dupuy, F. E., McCarthy, R., Selikowitz, M., & Johnstone, S. J. (2013). Excess beta activity in the EEG of children with attention-deficit/hyperactivity disorder: A disorder of arousal? International Journal of Psychophysiology, 89(3), 314–319.

    PubMed  Article  Google Scholar 

  16. Conners, C. K., & Staff, M. (2000). Conners’ continuous performance test II (CPT II V. 5). North Tonawanda, NY: Multi-Health Systems Inc.

  17. Conners, C. K., Sitarenios, G., Parker, J. D., & Epstein, J. N. (1998). The revised Conners’ Parent Rating Scale (CPRS-R): Factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology, 26(4), 257–268.

    PubMed  Article  Google Scholar 

  18. Escolano, C., Aguilar, M., & Minguez, J. (2011). EEG-based upper alpha neurofeedback training improves working memory performance. In: International conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston (USA), pp. 2327–2330.

  19. Faraone, S. V., Biederman, J., & Mick, E. (2006). The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies. Psychological Medicine, 36(2), 159–166.

    PubMed  Article  Google Scholar 

  20. Freunberger, R., Werkle-Bergner, M., Griesmayr, B., Lindenberger, U., & Klimesch, W. (2011). Brain oscillatory correlates of working memory constraints. Brain Research, 1375, 93–102.

    PubMed  Article  Google Scholar 

  21. Graham, J., Banaschewski, T., Buitelaar, J., Coghill, D., Danckaerts, M., Dittmann, R., et al. (2011). European guidelines on managing adverse effects of medication for ADHD. European Child & Adolescent Psychiatry, 20(1), 17–37.

    Article  Google Scholar 

  22. Gruzelier, J. H. (2013). EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neuroscience & Biobehavioral Reviews, 44, 124–141.

    Article  Google Scholar 

  23. Hanslmayr, S., Sauseng, P., Doppelmayr, M., Schabus, M., & Klimesch, W. (2005). Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Applied Psychophysiology and Biofeedback, 30, 1–10.

    PubMed  Article  Google Scholar 

  24. Heinrich, H., Gevensleben, H., & Strehl, U. (2007). Annotation: Neurofeedback-train your brain to train behaviour. Journal of Child Psychology and Psychiatry, 48(1), 3–16.

    PubMed  Article  Google Scholar 

  25. Holmes, A. P., Blair, R., Watson, G., & Ford, I. (1996). Nonparametric analysis of statistic images from functional mapping experiments. Journal of Cerebral Blood Flow & Metabolism, 16(1), 7–22.

    Article  Google Scholar 

  26. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.

    PubMed  Article  Google Scholar 

  27. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2–3), 169–195.

    PubMed  Article  Google Scholar 

  28. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain research reviews, 53(1), 63–88.

    PubMed  Article  Google Scholar 

  29. Kluetsch, R., Ros, T., Théberge, J., Frewen, P., Calhoun, V., Schmahl, C., et al. (2013). Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback. Acta Psychiatrica Scandinavica, 130(2), 123–136.

    PubMed  Article  Google Scholar 

  30. Lansbergen, M. M., Arns, M., van Dongen-Boomsma, M., Spronk, D., & Buitelaar, J. K. (2011a). The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(1), 47–52.

    PubMed  Article  Google Scholar 

  31. Lansbergen, M. M., van Dongen-Boomsma, M., Buitelaar, J. K., & Slaats-Willemse, D. (2011b). ADHD and EEG-neurofeedback: A double-blind randomized placebo-controlled feasibility study. Journal of Neural Transmission, 118(2), 275–284.

    PubMed Central  PubMed  Article  Google Scholar 

  32. Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441.

    PubMed  Article  Google Scholar 

  33. Logemann, H. N., Lansbergen, M. M., Van Os, T. W., Böcker, K. B., & Kenemans, J. L. (2010). The effectiveness of EEG-feedback on attention, impulsivity and EEG: A sham feedback controlled study. Neuroscience letters, 479(1), 49–53.

    PubMed  Article  Google Scholar 

  34. Loo, S. K., & Makeig, S. (2012). Clinical utility of EEG in attention-deficit/hyperactivity disorder: A research update. Neurotherapeutics, 9(3), 569–587.

    PubMed Central  PubMed  Article  Google Scholar 

  35. Lubar, J. F., & Shouse, M. N. (1976). EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR). Biofeedback and Self-Regulation, 1(3), 293–306.

    PubMed  Article  Google Scholar 

  36. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190.

    PubMed  Article  Google Scholar 

  37. Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 44(4), 377–384.

    Article  Google Scholar 

  38. Molina, B. S., Hinshaw, S. P., Swanson, J. M., Arnold, L. E., Vitiello, B., Jensen, P. S., et al. (2009). The MTA at 8 years: Prospective follow-up of children treated for combined-type ADHD in a multisite study. Journal of the American Academy of Child & Adolescent Psychiatry, 48(5), 484–500.

    Article  Google Scholar 

  39. Monastra, V. J., Lynn, S., Linden, M., Lubar, J. F., Gruzelier, J., & La Vaque, T. J. (2006). Electroencephalographic biofeedback in the treatment of attention-deficit/hyperactivity disorder. Journal of Neurotherapy, 9(4), 5–34.

    Article  Google Scholar 

  40. Nan, W., Rodrigues, J. P., Ma, J., Qu, X., Wan, F., Mak, P. I., et al. (2012). Individual alpha neurofeedback training effect on short term memory. International Journal of Psychophysiology, 86(1), 83–87.

    PubMed  Article  Google Scholar 

  41. Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human brain mapping, 15(1), 1–25.

    PubMed  Article  Google Scholar 

  42. Pesarin, F. (2001). Multivariate permutation tests: With applications in biostatistics (Vol. 240). New York, NY: Wiley.

    Google Scholar 

  43. Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–1857.

    PubMed  Article  Google Scholar 

  44. Polanczyk, G., de Lima, M., Horta, B., Biederman, J., & Rohde, L. (2007). The worldwide prevalence of ADHD: A systematic review and metaregression analysis. American Journal of Psychiatry, 164(6), 942–948.

    PubMed  Article  Google Scholar 

  45. Reynolds, C. R., & Kamphaus, R. W. (2004). Behavior Assessment System for Children. Circle Pines, MN: AGS Publishing.

    Google Scholar 

  46. Ros, T., Munneke, M., Parkinson, L., & Gruzelier, J. (2014). Neurofeedback facilitation of implicit motor learning. Biological Psychology 95(0):54–58. SAN (Society of Applied Neuroscience) Special issue on Neurofeedback.

  47. Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A., et al. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19(21), 1846–1852.

    PubMed  Article  Google Scholar 

  48. Snyder, S. M., & Hall, J. R. (2006). A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. Journal of Clinical Neurophysiology, 23(5), 441–456.

    Article  Google Scholar 

  49. Sterman, M. B. (2000). Basic concepts and clinical findings in the treatment of seizure disorders with EEG operant conditioning. Clinical Electroencephalography, 31(1), 45–55.

    PubMed  Article  Google Scholar 

  50. Wang, G. J., Volkow, N. D., Wigal, T., Kollins, S. H., Newcorn, J. H., Telang, F., et al. (2013). Long-term stimulant treatment affects brain dopamine transporter level in patients with attention deficit hyperactive disorder. PloS One, 8(5), e63,023.

    Article  Google Scholar 

  51. Wechsler, D. (2003). Wechsler intelligence scale for children-4th edition (WISC-IV). San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  52. Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Escolano.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Escolano, C., Navarro-Gil, M., Garcia-Campayo, J. et al. The Effects of Individual Upper Alpha Neurofeedback in ADHD: An Open-Label Pilot Study. Appl Psychophysiol Biofeedback 39, 193–202 (2014). https://doi.org/10.1007/s10484-014-9257-6

Download citation

Keywords

  • ADHD
  • Neurofeedback
  • Individual upper alpha
  • Cognitive performance
  • EEG