Skip to main content

Advertisement

Log in

Focal Electrical Stimulation as an Effective Sham Control for Active rTMS and Biofeedback Treatments

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

A valid sham control is important for determining the efficacy and effectiveness of repetitive transcranial magnetic stimulation (rTMS) as an experimental and clinical tool. Given the manner in which rTMS is applied, separately or in combination with self-regulatory approaches, and its intended impact on brain states, a valid sham control of this type may well serve as a meaningful control for biofeedback studies, where efforts to develop a credible control have often been less than ideal. This study examined the effectiveness of focal electrical stimulation of the frontalis muscle as a sham technique for blinding participants to high-frequency rTMS over the dorso-lateral prefrontal cortex (DLPFC) at durations, intensities, and schedules of stimulation similar to many clinical applications. In this within-subjects single blind design, 19 participants made guesses immediately after receiving 54 counterbalanced rTMS sessions (sham, 10 Hz, 20 Hz); 7 (13 %) of the guesses were made for sham, 31 (57 %) were made for 10 Hz, and 16 (30 %) were made for 20 Hz. Participants correctly guessed the sham condition 6 % (CI 1, 32 %) of the time, which is less than the odds of chance (i.e., of guessing at random, 33 %); correctly guessed the 10 Hz condition 66 % (CI 43, 84 %) of the time, which was greater than chance; and correctly guessed the 20 Hz condition 41 % (CI 21, 65 %) of the time, which was no different than chance. Focal electrical stimulation therefore can be an effective sham control for high-frequency rTMS of the DLPFC, as well as for active biofeedback interventions. Participants were unaware that electrical stimulation was, in fact, sham rTMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arana, A. B., Borckardt, J. J., Ricci, R., Anderson, B., Li, X., Linder, K. J., et al. (2008). Focal electrical stimulation as a sham control for repetitive transcranial magnetic stimulation: Does it truly mimic the cutaneous sensation and pain of active prefrontal repetitive transcranial magnetic stimulation? [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Brain Stimulation, 1(1), 44–51. doi:10.1016/j.brs.2007.08.006.

    Article  PubMed  Google Scholar 

  • Bear, M. F. (1999). Homosynaptic long-term depression: A mechanism for memory? Proceedings of the Natioanl Academy of Sciences, 96(17), 9457–9458.

    Article  Google Scholar 

  • Bonato, C., Miniussi, C., & Rossini, P. M. (2006). Transcranial magnetic stimulation and cortical evoked potentials: A TMS/EEG co-registration study. [Research Support, Non-U.S. Gov’t]. Clinical Neurophysiology, 117(8), 1699–1707. doi:10.1016/j.clinph.2006.05.006.

    Article  PubMed  Google Scholar 

  • Borckardt, J. J., Walker, J., Branham, R. K., Rydin-Gray, S., Hunter, C., Beeson, H., et al. (2008). Development and evaluation of a portable sham transcranial magnetic stimulation system. [Evaluation Studies]. Brain Stimulation, 1(1), 52–59. doi:10.1016/j.brs.2007.09.003.

    Article  PubMed  Google Scholar 

  • Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E. M., Hallett, M., et al. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48(5), 1398–1403.

    Article  PubMed  Google Scholar 

  • Di Lazzaro, V., Pilato, F., Saturno, E., Oliviero, A., Dileone, M., Mazzone, P., et al. (2005). Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. [Research Support, Non-U.S. Gov’t]. The Journal of Physiology, 565(Pt 3), 945–950. doi:10.1113/jphysiol.2005.087288.

    Article  PubMed  Google Scholar 

  • Fitzgerald, P. B., Fountain, S., & Daskalakis, Z. J. (2006). A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review]. Clinical Neurophysiology, 117(12), 2584–2596. doi:10.1016/j.clinph.2006.06.712.

    Article  PubMed  Google Scholar 

  • George, M. S., Nahas, Z., Kozel, F. A., Li, X., Denslow, S., Yamanaka, K., et al. (2002). Mechanisms and state of the art of transcranial magnetic stimulation. The Journal of ECT, 18(4), 170–181.

    Article  PubMed  Google Scholar 

  • George, M. S., Padberg, F., Schlaepfer, T. E., O’Reardon, J. P., Fitzgerald, P. B., Nahas, Z. H., et al. (2009). Controversy: Repetitive transcranial magnetic stimulation or transcranial direct current stimulation shows efficacy in treating psychiatric diseases (depression, mania, schizophrenia, obsessive-complusive disorder, panic, posttraumatic stress disorder). [Review]. Brain Stimulation, 2(1), 14–21. doi:10.1016/j.brs.2008.06.001.

    Article  PubMed  Google Scholar 

  • Hallett, M. (2000). Transcranial magnetic stimulation and the human brain. [Review]. Nature, 406(6792), 147–150. doi:10.1038/35018000.

    Article  PubMed  Google Scholar 

  • Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. [Clinical Trial Research Support, Non-U.S. Gov’t]. Neuron, 45(2), 201–206. doi:10.1016/j.neuron.2004.12.033.

    Article  PubMed  Google Scholar 

  • Loo, C. K., Taylor, J. L., Gandevia, S. C., McDarmont, B. N., Mitchell, P. B., & Sachdev, P. S. (2000). Transcranial magnetic stimulation (TMS) in controlled treatment studies: Are some “sham” forms active? [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. Biological Psychiatry, 47(4), 325–331.

    Article  PubMed  Google Scholar 

  • Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation–a decade of progress? Science, 285(5435), 1870–1874.

    Article  PubMed  Google Scholar 

  • Mennemeier, M., Triggs, W., Chelette, K., Woods, A., Kimbrell, T., & Dornhoffer, J. (2009). Sham transcranial magnetic stimulation using electrical stimulation of the scalp. Brain Stimulation, 2(3), 168–173. doi:10.1016/j.brs.2009.02.002.

    Article  PubMed  Google Scholar 

  • Niazi, I. K., Mrachacz-Kersting, N., Jiang, N., Dremstrup, K., & Farina, D. (2012). Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. [Research support, Non-U.S. Gov’t]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 595–604. doi:10.1109/TNSRE.2012.2194309.

    Article  PubMed  Google Scholar 

  • O’Reardon, J. P., Solvason, H. B., Janicak, P. G., Sampson, S., Isenberg, K. E., Nahas, Z., et al. (2007). Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: A multisite randomized controlled trial. [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. Biological Psychiatry, 62(11), 1208–1216. doi:10.1016/j.biopsych.2007.01.018.

    Article  PubMed  Google Scholar 

  • Pascual-Leone, A., Tormos, J. M., Keenan, J., Tarazona, F., Canete, C., & Catala, M. D. (1998). Study and modulation of human cortical excitability with transcranial magnetic stimulation. Journal of Clinincal Neurophysiology, 15(4), 333–343.

    Article  Google Scholar 

  • Plewnia, C., Reimold, M., Najib, A., Reischl, G., Plontke, S. K., & Gerloff, C. (2007). Moderate therapeutic efficacy of positron emission tomography-navigated repetitive transcranial magnetic stimulation for chronic tinnitus: A randomised, controlled pilot study. [Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. Journal of Neurology, Neurosurgery and Psychiatry, 78(2), 152–156. doi:10.1136/jnnp.2006.095612.

    Article  PubMed  Google Scholar 

  • Rossi, S., Ferro, M., Cincotta, M., Ulivelli, M., Bartalini, S., Miniussi, C., et al. (2007). A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS). [Clinical Trial Comparative Study Research Support, Non-U.S. Gov’t]. Clinical Neurophysiology, 118(3), 709–716. doi:10.1016/j.clinph.2006.11.005.

    Article  PubMed  Google Scholar 

  • Rossini, P. M., & Rossi, S. (2007). Transcranial magnetic stimulation: Diagnostic, therapeutic, and research potential. [Review]. Neurology, 68(7), 484–488. doi:10.1212/01.wnl.0000250268.13789.b2.

    Article  PubMed  Google Scholar 

  • Sitaram, R., Veit, R., Stevens, B., Caria, A., Gerloff, C., Birbaumer, N., et al. (2012). Acquired control of ventral premotor cortex activity by feedback training: An exploratory real-time FMRI and TMS study. [Case Reports Research Support, Non-U.S. Gov’t]. Neurorehabilitation and Neural Repair, 26(3), 256–265. doi:10.1177/1545968311418345.

    Article  PubMed  Google Scholar 

  • Stanton, P. K., & Sejnowski, T. J. (1989). Associative long-term depression in the hippocampus induced by hebbian covariance. Nature, 339(6221), 215–218. doi:10.1038/339215a0.

    Article  PubMed  Google Scholar 

  • Strafella, A. P., Ko, J. H., & Monchi, O. (2006). Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: The contribution of expectation [Clinical Trial Research Support, Non-U.S. Gov’t]. NeuroImage, 31(4), 1666–1672. doi:10.1016/j.neuroimage.2006.02.005.

    Article  PubMed  Google Scholar 

  • Wassermann, E. M., & Lisanby, S. H. (2001). Therapeutic application of repetitive transcranial magnetic stimulation: A review. [Review]. Clinical Neurophysiology, 112(8), 1367–1377.

    Article  PubMed  Google Scholar 

  • Wu, T., Sommer, M., Tergau, F., & Paulus, W. (2000). Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neuroscience Letters, 287(1), 37–40.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by an award from the National Center for Research Resources (P20 RR020146, UL1RR029884) and the National Institute of Child Health and Human Development (HD055677, HD055269).

Conflict of interest

Dr. Sheffer has received research funding from Pfizer, Inc. Dr. Bickel is a principal in HealthSIm LLC. Drs. Mennemeier, Dornhoffer, and Kimbrell, and Ms. Brackman, Brown, and Vuong, and Mr. Chellette reported no biomedical financial interests or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Sheffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheffer, C.E., Mennemeier, M.S., Landes, R.D. et al. Focal Electrical Stimulation as an Effective Sham Control for Active rTMS and Biofeedback Treatments. Appl Psychophysiol Biofeedback 38, 171–176 (2013). https://doi.org/10.1007/s10484-013-9221-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-013-9221-x

Keywords

Navigation