Efficacy of Traumatic Brain Injury Rehabilitation: Interventions of QEEG-guided Biofeedback, Computers, Strategies, and Medications

Abstract

The onset of cognitive rehabilitation brought with it a hope for an effective treatment for the traumatic brain injured subject. This paper reviews the empirical reports of changes in cognitive functioning after treatment and compares the relative effectiveness of several treatments including computer interventions, cognitive strategies, EEG biofeedback, and medications. The cognitive functions that are reviewed include auditory memory, attention and problem solving. The significance of the change in cognitive function is assessed in two ways that include effect size and longevity of effect. These analyses complement the previously published meta-reviews by adding these two criteria and include reports of EEG biofeedback, which is shown to be an effective intervention for auditory memory.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Ashley, M. J., Krych, D. K., & Lehr, R. P. (1990). Cost/Benefit analysis for post-acute rehabilitation of the traumatically brain-injured patient. Journal of Insurance Information, 22(2), 156–161.

    Google Scholar 

  2. Ashwal, S., Holshouser, B. A., & Tong, K. A. (2006). Use of advanced neuroimaging techniques in the evaluation of pediatric traumatic brain injury. Developmental Neuroscience, 28, 309–326. doi:10.1159/000094157.

    PubMed  Article  Google Scholar 

  3. Babikian, T., Freier, M. C., Ashwal, S., Riggs, M. L., Burley, T., & Holshouser, B. A. (2006). MR spectroscopy: Predicting long-term neuropsychological outcome following pediatric TBI. Journal of Magnetic Resonance Imaging, 24(4), 801–811. doi:10.1002/jmri.20696.

    PubMed  Article  Google Scholar 

  4. Belanger, H. G., Vanderploeg, R. D., Curtiss, G., & Warden, D. L. (2007). Recent neuroimaging techniques in mild traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(1), 5–20. doi:10.1176/appi.neuropsych.19.1.5.

    PubMed  Google Scholar 

  5. Benedict, R. H. B. (1989). The effectiveness of cognitive remediation strategies for victims of traumatic head injury: A review of the literature. Clinical Psychology Review, 9, 605–626. doi:10.1016/0272-7358(89)90014-7.

    Article  Google Scholar 

  6. Cappa, S. F., Benke, T., Clarke, S., Rossi, B., Stemmer, B., & van Heugten, C. M. (2003). EFNS guidelines on cognitive rehabilitation: Report of an EFNS task force. European Journal of Neurology, 10(1), 11–23. doi:10.1046/j.1468-1331.2003.00537.x.

    PubMed  Article  Google Scholar 

  7. Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13(4), 181–197. doi:10.1023/B:NERV.0000009483.91468.fb.

    PubMed  Article  Google Scholar 

  8. Cherek, L., & Taylor, M. (1995). Rehabilitation, case management, and functional outcome: An insurance industry perspective. Neuro Rehabilitation, 5(1), 87–95. doi:10.1016/1053-8135(94)00107-6.

    Google Scholar 

  9. Chestnut, R. M., Carney, N., Maynard, H., Patterson, P., Mann, N.·C., & Helfand, M. (1998). Evidence report on rehabilitation of persons with traumatic brain injury. Evidence report no. 2 (Contract 290-97-0018 to Oregon Health Sciences University). Rockville, MD: Agency for Health Care Policy and Research.

  10. Christensen, A. L. (1975). Luria’s Neuropsychological Investigation, Copenhagen, Murksgaard

  11. Cicerone, K. D., Dahlberg, C., Kalmar, K., Langenbahn, D. M., Malec, J. F., Bergquist, T. F., et al. (2000). Evidence-based cognitive rehabilitation: Recommendations for clinical practice. Archives of Physical Medicine and Rehabilitation, 81(12), 1596–1615. doi:10.1053/apmr.2000.19240.

    PubMed  Article  Google Scholar 

  12. Cicerone, K. D., Dahlberg, C., Malec, J. F., Langenbahn, D. M., Felicetti, T., Kneipp, S., et al. (2005). Evidence-based cognitive rehabilitation: Updated review of the literature from 1998 through 2002. Archives of Physical Medicine and Rehabilitation, 86, 1681–1692. doi:10.1016/j.apmr.2005.03.024.

    PubMed  Article  Google Scholar 

  13. Cicerone, K. D., Smith, L. C., Ellmo, W., Mangel, H. R., Nelson, P., Chase, R. F., et al. (1996). Neuropsychological rehabilitation of mild traumatic brain injury. Brain Injury: [B1], 10(4), 277–286. doi:10.1080/026990596124458.

    Article  Google Scholar 

  14. Coe, R. (2000). What is an ‘effect size’? A guide for users: Curriculum. Evaluation and Management Centre: Durham University.

    Google Scholar 

  15. Cohen, J. (1969). Statistical power analysis for the behavioral sciences. New York: Academic Press.

    Google Scholar 

  16. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd edition ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  17. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1987). California Verbal Learning Test (Research Edition ed.). San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  18. Fabiano, R. J., & Crewe, N. (1995). Variables associated with employment following severe traumatic brain injury. Rehabilitation Psychology, 40, 223–231. doi:10.1037/0090-5550.40.3.223.

    Article  Google Scholar 

  19. Fann, J. R., Uomoto, J. M., & Katon, W. J. (2001). Cognitive improvement with treatment of depression following mild traumatic brain injury. Psychosomatics, 42(1), 48–54. doi:10.1176/appi.psy.42.1.48.

    PubMed  Article  Google Scholar 

  20. Fasotti, L., Kovacs, F., Eling, P. A. T. M., & Brouwer, W. H. (2000). Time pressure management as a compensatory strategy training after closed head injury. Neuropsychological Rehabilitation, 10, 47–65. doi:10.1080/096020100389291.

    Article  Google Scholar 

  21. Freeman, M. R., Mittenberg, W., Dicowden, M., & Bat-Ami, M. (1992). Executive and compensatory memory retraining in traumatic brain injury. Brain Injury: [BI], 6(1), 65–70. doi:10.3109/02699059209008124.

    Article  Google Scholar 

  22. Gavett, B. E., O’Bryant, S. E., Fisher, J. M., & McCaffrey, R. J. (2005). Hit rates of adequate performance based on the test of memory malingering (TOMM) Trial 1. Applied Neuropsychology, 12(1), 1–4. doi:10.1207/s15324826an1201_1.

    PubMed  Article  Google Scholar 

  23. Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Beverly Hills: Sage.

    Google Scholar 

  24. Glisky, E. L., & Schacter, D. (1986). Remediation of organic memory disorders: Current status and future prospects. The Journal of Head Trauma Rehabilitation, 1(3), 54–63. doi:10.1097/00001199-198609000-00009.

    Article  Google Scholar 

  25. Gray, J., & Robertson, I. (1992). Microcomputer based attentional retraining after brain damage: A randomized group controlled study. Neuropsychological Rehabilitation, 2, 97–155. doi:10.1080/09602019208401399.

    Article  Google Scholar 

  26. Gronwall, D. M. A. (1977). Paced auditory serial-addition task: A measure of recovery from concussion. Perceptual and Motor Skills, 44, 367–373.

    PubMed  Google Scholar 

  27. Hammond, C., Walker, J., Hoffman, D., Lubar, J., Trudeau, D., Gurnee, R., et al. (2004). Standards for the use of quantitative electroencephalography (QEEG) in neurofeedback: A position paper of the International Society for Neuronal Regulation. Journal of Neurotherapy, 8(1), 5–29. doi:10.1300/J184v08n01_02.

    Article  Google Scholar 

  28. Harley, J. P., Allen, C., Braciszewksi, T. L., Cicerone, K. D., Dahlberg, C., Evans, S., et al. (1992). Guidelines for cognitive rehabilitation. Neuro Rehabilitation, 2, 62–67.

    Google Scholar 

  29. Hedges, L. V. (1981). Distributional theory for Glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6, 107–128. doi:10.2307/1164588.

    Article  Google Scholar 

  30. Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. New York: Academic Press.

    Google Scholar 

  31. Hoffman, D. A., Lubar, F. J., Thatcher, R. W., Sterman, M. B., Rosenfeld, P. J., Striefel, S., et al. (1999). Limitation of the American Academy of neurology and American clinical neurophysiology society paper on QEEG. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(3), 401–407.

    PubMed  Google Scholar 

  32. Hughes, J. R., & John, E. R. (1999). Conventional and quantitative electroencephalography in psychiatry. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(2), 190–208.

    PubMed  Google Scholar 

  33. IVA. (1995). Brain train. Richmond, VA: Brain Train.

    Google Scholar 

  34. Kaschel, R., Della Sala, S., Cantagallo, A., Fahlbock, A., Laaksonen, R., & Kazan, M. (2002). Imagery mnemonics for the rehabilitation of memory: A randomised group controlled trial. Neuropsychological Rehabilitation, 12, 127–153. doi:10.1080/09602010143000211.

    Article  Google Scholar 

  35. Keller, I. (2001). Neurofeedback therapy of attention deficits in patients with traumatic brain injury. Journal of Neurotherapy, 5, 19–33. doi:10.1300/J184v05n01_03.

    Article  Google Scholar 

  36. Kerner, M. J., & Acker, M. (1985). Computer delivery of memory retraining with head injured patients. Cognitive Rehabilitation, 26–31.

  37. Laatsch, L., & Stress, M. (2000). Neuropsychological change following individualized cognitive rehabilitation therapy. Neuro Rehabilitation, 15(3), 189–197.

    PubMed  Google Scholar 

  38. León-Carrión, J., Dominguez-Roldán, J. M., Murillo-Cabezas, F., o Dominguez-Morales, M., & Muñoz-Sanchez, M. A. (2000). The role of citicholine in neuropsychological training after traumatic brain injury. Neuro Rehabilitation, 14(1), 33–40.

    PubMed  Google Scholar 

  39. Levine, B., Cabeza, R., McIntosh, A. R., Black, S. E., Grady, C. L., & Stuss, D. T. (2002). Functional reorganization of memory after traumatic brain injury: A study with H2150 positron emission tomography. Journal of Neurology, Neurosurgery and Psychiatry, 73(2), 173–181. doi:10.1136/jnnp.73.2.173.

    Article  Google Scholar 

  40. Lubar, J. O., & Lubar, J. F. (1984). Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting. Biofeedback and Self-Regulation, 9(1), 1–23. doi:10.1007/BF00998842.

    PubMed  Article  Google Scholar 

  41. Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & O’Donnell, P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance. Biofeedback and Self-Regulation, 20(1), 83–99. doi:10.1007/BF01712768.

    PubMed  Article  Google Scholar 

  42. Marker, T. (1996). COGPACK. Ladenburg, Germany: Programmpaket fur neuropsychologicschen rehabilitation.

    Google Scholar 

  43. McAllister, T. W., Sparling, M. B., Flashman, L. A., & Saykin, A. J. (2001). Neuroimaging findings in mild traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 23(6), 775–791.

    PubMed  Google Scholar 

  44. McDowell, S., Whyte, J., & D’Esposito, M. (1998). Differential effect of a dopaminergic agonist on prefrontal function in traumatic brain injury patients. Brain, 121(Pt 6), 1155–1164. doi:10.1093/brain/121.6.1155.

    PubMed  Article  Google Scholar 

  45. McKinlay, W. W. (1992). Achieving generalization of memory training. Brain Injury: [BI], 6(2), 107–108. doi:10.3109/02699059209029649.

    Article  Google Scholar 

  46. Milders, M., Deelman, B., & Berg, I. (1998). Rehabilitation of memory for people’s names. Memory (Hove, England), 6(1), 21–36. doi:10.1080/741941597.

    Article  Google Scholar 

  47. Moldover, J. E., Goldberg, K. B., & Prout, M. F. (2004). Depression after traumatic brain injury: A review of evidence for clinical heterogeneity. Neuropsychology Review, 14(3), 143–153. doi:10.1023/B:NERV.0000048181.46159.61.

    PubMed  Article  Google Scholar 

  48. NAN. (2002). Cognitive rehabilitation, official position of the national academy of neuropsychology. Retrieved April 15, 2007 from http://nanonline.org/downloads/paio/Position/NANPositionCogRehab.pdf.

  49. Napolitano, E., Elovic, E. P., & Qureshi, A. I. (2005). Pharmacological stimulant treatment of neurocognitive and functional deficits after traumatic and non-traumatic brain injury. Medical Science Monitor, 11(6), RA212–RA220.

    PubMed  Google Scholar 

  50. Niemann, H., Ruff, R. M., & Baser, C. A. (1990). Computer-assisted attention retraining in head-injured individuals: A controlled efficacy study of an outpatient program. Journal of Consulting and Clinical Psychology, 38(6), 811–817.

    Article  Google Scholar 

  51. Nuwer, M. (1997). Assessment of digital EEG, quantitative EEG, and EEG brain mapping. Neurology, 49, 277–292.

    PubMed  Google Scholar 

  52. Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: Applications, interpretations and limitations. Contemporary Educational Psychology, 25, 241–286. doi:10.1006/ceps.2000.1040.

    PubMed  Article  Google Scholar 

  53. Othmer, S., & Othmer, S.·F. (1992). EEG biofeedback training for hyperactivity, attention deficit disorder, specific learning disability, and other disorders. EEG Spectrum, 16100 Ventura Blvd., Ste 100, Encino, Ca.

  54. Park, N. W., Proulx, G. B., & Towers, W. M. (1999). Evaluation of the attention process training programme. Neuropsychological Rehabilitation, 9(2), 135–154.

    Article  Google Scholar 

  55. Plenger, P. M., Dixon, C. E., Castillo, R. M., Frankowski, R. F., Yablon, S. A., & Levin, H. S. (1996). Subacute methylphenidate treatment for moderate to moderately severe traumatic brain injury: A preliminary double-blind placebo-controlled study. Archives of Physical Medicine and Rehabilitation, 77(6), 536–540. doi:10.1016/S0003-9993(96)90291-9.

    PubMed  Article  Google Scholar 

  56. Quemada, J. I., Munoz Cespedes, J. M., Ezkerra, J., Ballesteros, J., Ibarra, N., & Urruticoechea, I. (2003). Outcome of memory rehabilitation in traumatic brain injury assessed by neuropsychological tests and questionnaires. The Journal of Head Trauma Rehabilitation, 18(6), 532–540.

    PubMed  Google Scholar 

  57. Reitan, R. M., & Wolfson, D. (1993). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation (2nd ed.). South Tucson, AZ: Neuropsychology Press.

    Google Scholar 

  58. Rey, A. (1941). Psychological examination of traumatic encephalopathy. Archieves de Psychologic, 28, 286–340. Sections translated by J. Corwin & F.·W. Bylsma. (1993). The Clinical Neuropsychologist, 4–9.

  59. Ricker, J. H. (1998). Traumatic brain injury rehabilitation: Is it worth the cost? Applied Neuropsychology, 5(4), 184–193. doi:10.1207/s15324826an0504_3.

    PubMed  Article  Google Scholar 

  60. Ruff, R., Mahaffey, R., Engel, J., Farrow, C., Cox, D., & Karzmark, P. (1994). Efficacy study of THINKable in the attention and memory retraining of traumatically head-injured patients. Brain Injury: [BI], 8(1), 3–14.

    Google Scholar 

  61. Ryan, T. V., & Ruff, R. M. (1988). The efficacy of structured memory retraining in a group comparison of head trauma patients. Archives of Clinical Neuropsychology, 3(2), 165–179. doi:10.1016/0887-6177(88)90061-3.

    PubMed  Article  Google Scholar 

  62. Salazar, A. M., Zitnay, G. A., Warden, D. L., & Schwab, K. A. (2000). Defense and veterans head injury program: Background and overview. The Journal of Head Trauma Rehabilitation, 15(5), 1081–1091.

    PubMed  Google Scholar 

  63. Schmitter-Edgecombe, M., Fahy, J., Whelan, J., & Long, C. (1995). Memory remediation after severe closed head injury. Notebook training versus supportive therapy. Journal of Consulting and Clinical Psychology, 63, 484–489. doi:10.1037/0022-006X.63.3.484.

    PubMed  Article  Google Scholar 

  64. Schoenberger, N. E., Shif, S. C., Esty, M. L., Ochs, L., & Matheis, R. J. (2001). Flexyx neurotherapy system in the treatment of traumatic brain injury: An initial evaluation. The Journal of Head Trauma Rehabilitation, 16(3), 260–274. doi:10.1097/00001199-200106000-00005.

    PubMed  Article  Google Scholar 

  65. Siegmund, K. (1999). Neurosoft: Ein integriertes therapliesystem. Germany: Burladingen.

    Google Scholar 

  66. Stephens, J. (2006). The effectiveness of EEG biofeedback and cognitive rehabilitation as treatments for moderate to severe traumatic brain injury. Victoria University.

  67. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. doi:10.1037/h0054651.

    Article  Google Scholar 

  68. Tansey, M. (1991). Wechsler (WISC-R) changes following treatment of learning disabilities via EEG biofeedback training in a private practice setting. Australian Journal of Psychology, 43, 147–153. doi:10.1080/00049539108260139.

    Article  Google Scholar 

  69. Tansey, M. A. (1993). Ten-year stability of EEG biofeedback results for a hyperactive boy who failed fourth grade perceptually impaired class. Biofeedback and Self-Regulation, 18(1), 33–44. doi:10.1007/BF00999512.

    PubMed  Article  Google Scholar 

  70. Thatcher, R. W. (2000). EEG operant conditioning (biofeedback) and traumatic brain injury. Clinical EEG (Electroencephalography), 31(1), 38–44.

    Google Scholar 

  71. Thatcher, R. W., Moore, N., John, E. R., Duffy, F., Hughes, J., & Krieger, M. (1999). QEEG and traumatic brain injury: Rebuttal of the American Academy of Neurology 1997 Report by the EEG and Clinical Neuroscience Society. Clinical EEG, 30(3), 94–98.

    Google Scholar 

  72. Thatcher, R. W., Walker, R. A., Gerson, I., & Geisler, F. (1989). EEG Discriminate analysis of mild head trauma. EEG and Clinical Neurophysiology, 73, 93–106.

    Article  Google Scholar 

  73. Thornton, K. E. (2000). Rehabilitation of memory functioning in brain injured subjects with EEG biofeedback. The Journal of Head Trauma Rehabilitation, 15(6), 1285–1296. doi:10.1097/00001199-200012000-00008.

    PubMed  Article  Google Scholar 

  74. Thornton, K. (2001). Patent # 6309361 B1. Method for improving memory by identifying and using QEEG parameters correlated to specific cognitive functioning. Issued 10-30-2001.

  75. Thornton, K. E. (2002). Electrophysiology of the reasons the brain damaged subject can’t recall what they hear. Archives of Clinical Neuropsychology, 17, 1–17. doi:10.1016/S0887-6177(00)00073-1.

    Article  Google Scholar 

  76. Thornton, K. E., & Carmody, D. P. (2005). Electroencephalogram biofeedback for reading disability and traumatic brain injury. Child and Adolescent Psychiatric Clinics of North America, 14(1), 137–162. doi:10.1016/j.chc.2004.07.001.

    PubMed  Article  Google Scholar 

  77. Thornton, K. E., & Carmody, D. P.(2007). Traumatic brain injury rehabilitation: QEEG biofeedback treatment protocols. Technical Report, 2007 (1), Brain Foundation, S. Plainfield, NJ, 07080

  78. Thornton, K. E., & Carmody, D. P. Eyes-closed and activation databases in predicting cognitive effectiveness. Journal of Neurotherapy (in press).

  79. Tinius, T. P., & Tinius, K. A. (2000). Changes after EEG biofeedback and cognitive retraining in adults with mild traumatic brain injury and attention deficit hyperactivity disorder. Journal of Neurotherapy, 4(2), 27–44. doi:10.1300/J184v04n02_05.

    Article  Google Scholar 

  80. TOVA. (1992). Test of Variables of Attention. Los Alamitos, CA: The TOVA Company.

    Google Scholar 

  81. Wallesch, C. W., Curio, N., Galazky, I., Jost, S., & Synowitz, H. (2001). The Neuropsychology of blunt head injury in the early post acute stage: Effects of focal lesions and diffuse axonal injury. Journal of Neurotrauma, 18(1), 11–20. doi:10.1089/089771501750055730.

    PubMed  Article  Google Scholar 

  82. Wechsler, D. (1945). A standardized memory scale for clinical use. The Journal of Psychology, 19, 87–95.

    Google Scholar 

  83. Wechsler Adult Intelligence Scale. (1955). Wechsler Adult Intelligence Scale. San Antonio, TX: Harcourt Assessment, Inc.

    Google Scholar 

  84. Wehman, P., Kreutzer, J., Sale, P., West, M., Morton, M., & Diambra, J. (1989). Cognitive impairment and remediation: Implications for employment following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 4(3), 66–75.

    Google Scholar 

  85. Whyte, J., Hart, T., Vaccaro, M., Grieb-Neff, P., Risser, A., Polansky, M., et al. (2004). Effects of methylphenidate on attention deficits after traumatic brain injury: A multidimensional, randomized, controlled trial. American Journal of Physical Medicine and Rehabilitation, 83(6), 401–420. doi:10.1097/01.PHM.0000128789.75375.D3.

    PubMed  Article  Google Scholar 

  86. Wisconsin Card Sorting Test. (1993). Wisconsin Card Sorting Test. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kirtley E. Thornton.

Appendix A. Calculation of Effect Size

Appendix A. Calculation of Effect Size

Effect size is a way of quantifying the size of the difference between two groups (Coe 2000). It quantifies the effectiveness of a particular intervention relative to some comparison and answers the question of how well does the intervention work. An effect size (ES) of zero means that the mean scores of two groups are identical, while an ES of 1 indicates that the mean scores of one group are superior to a second group by a value of one standard deviation. Some examples of other effect sizes show the overlap in the distributions of scores. An ES of 0.20 indicates that the treatment moved a subject from the 50th percentile to the 58th percentile, while an ES of 0.50 means that the subject is now performing at the 69th percentile, and an ES of 0.80 means that the subject is now performing at the 79th percentile.

Olejnik and Algina (2000) describe the history of methods for calculating effects size. Cohen’s effect size (1969), d, was the first commonly recognized effect size. It represented mean differences in units of common population standard deviation. Glass et al. (1981) proposed a modification of the Cohen d where the common standard deviation was replaced with the standard deviation of the control group. Hedges (1981) suggested that a better estimate of effect size would use the pooled variance and standard deviation rather than the standard deviation of one of the groups. There are also differences in the literature on which estimate of variance to use. Typically the variance of the control group is used, which represents the population. Others argue for a pooled estimate when there is no control group but rather two treatment groups and the population variance is unknown. As indicated by Coe (2000), when using the pooled standard deviation to calculate the effect size, which generally gives a better estimate than the control group SD, it is slightly biased and gives a value slightly larger than the true population value. This bias is corrected using a formula (Hedges and Olkin 1985), p. 80).

While Cohen (1988), p. 25) warned that he arbitrarily chose values to classify the interpretation of size of the effect, many studies continue to interpret an effect size of .2 as a small effect, a .5 as a medium effect, and a .8 is a large effect (Coe 2000). The interpretation is improved by using confidence intervals that provide a range of values around the effect size to determine the likelihood of the effect size occurring due to chance. Greater accuracy of the effect size is more likely when based on a large sample rather than a small sample. If the confidence interval includes the value of zero, then the effect size is statistically equivalent to no effect. If the confidence interval does not include the value of zero, then the effect size is statistically significant.

In the effect size analysis of the interventions for TBI, we included research reports that provided the statistics necessary to obtain an effect size. These statistics included the means and standard deviations of the treatment and control groups. In the studies where there was no control group, then we used the means and standard deviations of the pre-treatment and post-treatment scores of the treatment group.

We provide an example of how we obtained the effect size and confidence intervals for three interventions that addressed memory. Kerner and Acker (1985) treated 12 subjects with TBI using a memory retraining software and showed improved memory scores for the treatment group (M = 34.75, SD = 12.53) compared to 12 subjects in a control group (M = 30.42, SD = 11.41). The pooled standard deviation is 11.98. The effect size, using Hedge’s bias correction for sample size, is 0.35 with a 95% confidence interval of −0.46 to 1.16. Using Cohen’s terms, the effect size of 0.35 is small to moderate. However, the confidence interval includes the value of zero, making the effect size not statistically different from zero. The conclusion, using the effect size and 95% confidence interval, is that the memory retraining software intervention is no different than the control group treatment.

In a second example, Schoenberger et al. (2001) treated 12 TBI subjects with 25 sessions of Flexyx Neurotherapy System. Immediate and delayed memory scores were obtained using the Rey’s Auditory Verbal Learning Test (AVLT). Six subjects were treated first for five to six weeks while six were in a wait-list control group. Then the six subjects in the wait-list group received treatment. We can assess the effect size for the treatment by using pre- and post- treatment scores for the entire group of 12 subjects. There was no significant effect size for immediate memory score. The pre-treatment scores (M = 10.50, SD = 2.11) were no different than the post-treatment scores (M = 10.17, SD = 1.90), ES = − 0.16 with a 95% confidence interval of −0.96 to 0.64. The authors reported a significant effect (p < .10) for treatment with a significant improvement in the delayed memory scores between pre-treatment (M = 9.67, SD = 2.39) and post-treatment scores (M = 11.08, SD = 2.54); however the ES was 0.55 with a 95% confidence interval ranging from −0.26 to 1.37.

In the third example, on data reported in this paper, 19 subjects with TBI were given QEEG treatment. Their pre- and post-treatment scores were compared to a control group of 15 subjects. The TBI subjects improved their scores on paragraph recall from pre-treatment (M = 8.75, SD = 4.51) to post-treatment (M = 24.46, SD = 7.25), in addition the ES was 2.61 with a 95% confidence interval ranging from 1.87 to 3.47. The confidence interval does not include the value of zero. Clearly the treatment was effective.

Appendix B Sample sizes and durations of interventions

Intervention Reference Number subjects Number sessions
Computer Kerner and Acker (1985) 12 12
Gray and Robertson (1992) 31 17.5
Ruff et al. (1994) 15 20
Park et al. 1999 23 20
Niemann et al 1990 29 36
Strategies Ryan and Ruff, (1988) 20 132
Freeman et al. (1992) 6 15
Cicerone et al. (1996) 20 6 months
Novak et al. 1996 22 20
Milders et al. (1998) 13 12
Fasotti et al. (2000) 12 7.4
Laatsch and Stress (2000) 16 Mean of 32
Quemada et al. (2003) 12 120
Kaschel et al. (2002) 12 30
Stephens (2006) 10 20
Salazar et al. (2000) 120
67 in hospital treatment
53 home treatment
32
Medications McDowell et al. (1998) 24 Subjects tested twice––with placebo and with Bromocriptine
Whyte et al. (2004) 19 Ss completed some tasks Subjects tested twice––with placebo and with Methylphenidate
  9 Ss completed all tasks  
León-Carrión et al. (2000) 10 Cytidinediphosphocholine for 3 months
Fann et al. (2001) 15 Sertraline for 8 weeks
Eyes Closed QEEG Tinius and Tinius (2000) 16 20
Standard QEEG Stephens (2006) 6 20
Modified QEEG Keller (2001) 12 10
Schoenberger et al. (2001) 12 25
Activation QEEG Thornton and Carmody (2005) 7 80
Thornton and Carmody, this article, paragraph recall 19 54

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thornton, K.E., Carmody, D.P. Efficacy of Traumatic Brain Injury Rehabilitation: Interventions of QEEG-guided Biofeedback, Computers, Strategies, and Medications. Appl Psychophysiol Biofeedback 33, 101 (2008). https://doi.org/10.1007/s10484-008-9056-z

Download citation

Keywords

  • EEG biofeedback
  • Traumatic brain injury
  • Cognitive rehabilitation
  • Neurocognitive rehabilitation
  • QEEG
  • Activation QEEG
  • Memory rehabilitation