Skip to main content
Log in

Deactivation of Brain Areas During Self-Regulation of Slow Cortical Potentials in Seizure Patients

  • Case Studies and Clinical Replications Series
  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

This study investigates the neurophysiological basis of EEG feedback for patients with epilepsy. Brain areas are identified that become hemodynamically deactivated when epilepsy patients, trained in EEG self-regulation, generate positive slow cortical potentials (SCPs). Five patients were trained in producing positive SCPs, using a training protocol previously established to reduce seizure frequency in patients with drug refractory epilepsy. Patients attempted to produce positive SCP shifts in a functional magnetic resonance imaging (fMRI) scanner. Two patients were able to reliably produce positive SCP shifts. When these successful regulators were prompted to produce positive SCPs, blood oxygen level-dependent (BOLD) response indicated deactivation, in comparison to a control state, around the recording electrode, frontal lobe, and thalamus. Unsuccessful regulators’ BOLD response indicated no deactivation in cortical areas proximal to the active electrode. No thalamic deactivation was found in poor regulators. Decreased seizure frequency from SCP training may be the result of positively reinforced inhibition in cortical areas proximal to active electrode placement, the frontal cortex, and the thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  • Birbaumer, N. (1999). Slow cortical potentials: plasticity, operant control, and behavioral effects. The Neuroscientist, 5, 74–78.

    Article  Google Scholar 

  • Birbaumer, N., Elbert, T., Canavan, A., & Rockstroh, B. (1990). Slow cortical potentials of the brain. Physiological Reviews, 70, 1–41.

    PubMed  Google Scholar 

  • Braitenberg, V., & Schütz, A. (1991). Anatomy of the cortex: Statistics, geometry. Springer: Heidelberg.

    Google Scholar 

  • Elbert, T., Rockstroh, B., Canavan, A., Birbaumer, N., Lutzenberger, W., von Bülow, I., et al. (1991). Self-regulation of slow cortical potentials and its role in epileptogenesis. In J. Carlson & R. Seifert (Eds.), International perspectives on self-regulation and health (pp. 65–95). New York: Plenum.

    Google Scholar 

  • Hershey, T., Revilla, F. J., Wernle, A. R., McGee-Minnich, L., Antenor, J. V., Videen, T. O., et al. (2003). Cortical and subcortical blood flow effects of subthalamic nucleus stimulation in PD. Neurology, 61, 816–821.

    PubMed  Google Scholar 

  • Hinterberger, T., Veit, R., Strehl, U., Trevorrow, T., Erb, M., Kotchoubey, B., et al. (2003). Brain areas activated in fMRI during self-regulation of slow cortical potentials (SCPs). Experimental Brain Research, 152, 113–122.

    Article  Google Scholar 

  • Hinterberger, T., Veit, R., Wilhelm, B., Weiskopf, N., Vatine, J. J., & Birbaumer, N. (2005). Neuronal mechanisms underlying control of a brain–computer interface. European Journal of Neuroscience, 21(11), 3169–3181.

    Article  PubMed  Google Scholar 

  • Ikeda, A., Terada, K., Mikuni, N., Burgess, R. R., Comair, Y., Taki, W., et al. (1996). Subdural recording of ictal DC shifts in neocortical seizures in humans. Epilepsia, 37, 662–674.

    Article  PubMed  Google Scholar 

  • Kotchoubey, B., Kübler, A., Strehl, U., Flor, H., & Birbaumer, N. (2002). Can humans perceive their brain states? Consciousness and Cognition, 11(1), 98–113.

    Article  PubMed  Google Scholar 

  • Kotchoubey, B., Schneider, D., Schleichert, H., Strehl, U., Uhlmann, C., Blankenhorn, V., et al. (1997). Stability of cortical self-regulation in epilepsy patients. NeuroReport, 8, 1867–1870.

    Article  PubMed  Google Scholar 

  • Kotchoubey, B., Strehl, U., Uhlmann, C., Holzapfel, S., König, M., Fröscher, W., et al. (2001). Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia, 42, 406–416.

    Article  PubMed  Google Scholar 

  • Lauritzen, M. (2001). Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism, 21, 1367–1383.

    PubMed  Google Scholar 

  • Logothetis, N., Pauls, J., Augath, M., Trinath, T., & Oelterman, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.

    Article  PubMed  Google Scholar 

  • Monderer, R. S., Harrison, D. M., & Haut, S. R. (2002). Neurofeedback and Epilepsy. Epilepsy and Behavior, 3(3), 214–218.

    Article  PubMed  Google Scholar 

  • Nagay, Y., Critchley, H. D., Featherstone, E., Fenwick, P. B., Trimble, M. R., & Rolan, R. J. (2004). Brain activity relating to the contingent negative variation: An fMRI investigation. Neuroimage, 21, 1232–1241.

    Article  Google Scholar 

  • Ogawa, S., Lee, T., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87, 9868–9872.

    Article  PubMed  Google Scholar 

  • Rockstroh, B., Elbert, T., Birbaumer, N., Wolf, P., Düchting-Röth, A., Reker, M., et al. (1993). Cortical self-regulation in patients with epilepsies. Epilepsy Research, 14, 63–72.

    Article  PubMed  Google Scholar 

  • Sterman, M. B., & Friar, L. (1972). Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalography and Clinical Neurophysiology, 33(1), 89–95.

    Article  PubMed  Google Scholar 

  • Strehl, U. (2003). Biofeedback of slow cortical potentials in epilepsy. In M. S. Schwartz & F. Andrasik (Eds.), Biofeedback: A practitioner's guide (3rd edn.). New York: Guilford Press.

    Google Scholar 

  • Whitsett, S. F., Lubar, J. F., Holder, G. S., Pamplin, W. E., & Shabsin, H. S. (1982). A double-blind investigation of the relationship between seizure activity and the sleep EEG following EEG biofeedback training. Biofeedback and Self Regulation, 7(2), 193–209.

    Article  PubMed  Google Scholar 

  • Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant voxels in images of cerebral activation. Human Brain Mapping, 4, 58–73.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Bundesministerium für Bildung und Forschung (BMBF) and the National Institutes of Health (NIH). We thank Dr. Herta Flor for helpful comments on earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Strehl Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strehl, U., Trevorrow, T., Veit, R. et al. Deactivation of Brain Areas During Self-Regulation of Slow Cortical Potentials in Seizure Patients. Appl Psychophysiol Biofeedback 31, 85–94 (2006). https://doi.org/10.1007/s10484-006-9006-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-006-9006-6

KEY WORDS:

Navigation