Skip to main content
Log in

fMRI Hippocampal Activity During a VirtualRadial Arm Maze

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

Numerous studies have shown that the hippocampus is critical for spatial memory. Within nonhuman research, a task often used to assess spatial memory is the radial arm maze. Because of the spatial nature of this task, this maze is often used to assess the function of the hippocampus. Our goal was to extrapolate this task to humans and examine whether healthy undergraduates utilize their hippocampus while performing a virtual reality version of the radial arm maze task. Thirteen undergraduates performed a virtual radial arm maze during functional magnetic resonance imaging. The brain maps of activity reveal bilateral hippocampal BOLD signal changes during the performance of this task. However, paradoxically, this BOLD signal change decreases during the spatial memory component of the task. Additionally, we note frontal cortex activity reflective of working memory circuits. These data reveal that, as predicted by the rodent literature, the hippocampus is involved in performing the virtual radial arm maze in humans. Hence, this virtual reality version may be used to assess the integrity of hippocampus so as to predict risk or severity in a variety of psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre, G. K., Detre, J. A., et al. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6(6), 823–829.

    PubMed  Google Scholar 

  • Alvarado, M. C., & Rudy, J. W. (1995). Rats with damage to the hippocampal-formation are impaired on the transverse-patterning problem but not on elemental discriminations. Behavioral Neuroscience, 109(2), 204–211.

    Article  PubMed  Google Scholar 

  • Astur, R. S., St. Germain, S., Mathalon, D. H., D’Souza, D. C., Krystal, J. H., Constable, R. T., et al. (2004). Using virtual reality to investigate the functioning of the hippocampus in schizophrenia (Vol. 1, p. 62). Cybertherapy Abstracts.

  • Astur, R. S., Tropp, J., et al. (2004). Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behavioural Brain Research, 151(1–2), 103–115.

    Google Scholar 

  • Baker, E. K., Demireva, P., et al. (2005). Virtual navigation in individuals with Alzheimer’s disease. New York: Cognitive Neuroscience Society.

    Google Scholar 

  • Bingman, V. (1988). Unimpaired acquisition of spatial reference memory, but impaired homing performance in hippocampal ablated pigeons. Behavioral Brain Research, 27, 179–188.

    Article  Google Scholar 

  • Braak, H., & Braak, E. (1990). Cognitive impairment in Parkinson’s disease: Amyloid plaques, neurofibrillary tangles, and neuropil threads in the cerebral cortex. Journal of Neural Transmission Parkinsons Disease and Dementia Section, 2(1), 45–57.

    Google Scholar 

  • Bremner, J. D., Randall, P., et al. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biological Psychiatry, 41(1), 23–32.

    Article  PubMed  Google Scholar 

  • Bunsey, M., & Eichenbaum, H. (1996). Conservation of hippocampal memory function in rats and humans. Nature, 379(6562), 255–257.

    Article  PubMed  Google Scholar 

  • Cameron, K. A., Yashar, S., et al. (2001). Human hippocampal neurons predict how well word pairs will be remembered. Neuron, 30(1), 289–298.

    Article  PubMed  Google Scholar 

  • Cohen, N. J., & Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system (Vol. XII, 330 pp). Cambridge, MA: MIT Press.

    Google Scholar 

  • Ekstrom, A. D., Kahana, M. J., et al. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184–187.

    Article  PubMed  Google Scholar 

  • Freund, T. F., & Buzaki, G. (1996). Interneurons in the hippocampus. Hippocampus, 6, 347–470.

    Article  PubMed  Google Scholar 

  • Frisk, V., & Milner, B. (1990). The role of the left hippocampal region in the acquisition and retention of story content. Neuropsychologia, 28, 349–359.

    Article  PubMed  Google Scholar 

  • Groen, G., Wunderlich, A. P., et al. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404–408.

    Article  PubMed  Google Scholar 

  • Hasselmo, M. E., & Wyble, B. P. (1997). Free recall and recognition in a network model of the hippocampus: Simulating effects of scopolamine on human memory function. Behavioural Brain Research, 89(1–2), 1–34.

    Google Scholar 

  • Huettel, S. A., McKeown, M. J., et al. (2004). Linking hemodynamic and electrophysiological measures of brain activity: Evidence from functional MRI and intracranial field potentials. Cerebral Cortex, 14(2), 165–173.

    Article  PubMed  Google Scholar 

  • Jones-Gotman, M. (1986). Memory for designs: The hippocampal contribution. Neuropsychologia, 24(2), 193–203.

    Article  PubMed  Google Scholar 

  • Jones-Gotman, M., Zatorre, R., et al. (1997). Learning and retention of words and designs following excision from medial or lateral temporal-lobe structures. Neuropsychologia, 35(7), 963–973.

    Article  PubMed  Google Scholar 

  • Kahana, M. J., Sekuler, R., et al. (1999). Human theta oscillations exhibit task dependence during virtual maze navigation. Nature, 399(6738), 781–784.

    Article  PubMed  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., et al. (1995). Essentials of neural science and behavior. Stamford, UK: Appleton & Lange.

    Google Scholar 

  • Kim, J. J., & Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear. Science, 256(5057), 675–677.

    PubMed  Google Scholar 

  • Lauritzen, M. (2001). Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism, 21(12), 1367–1383.

    PubMed  Google Scholar 

  • Logothetis, N. K., Pauls, J., et al. (2001). Neurophysiological investigation of the basis of the fMRI signal [see comment]. Nature, 412(6843), 150–157.

    Article  PubMed  Google Scholar 

  • Maguire, E. A., Burgess, N., et al. (1998). Knowing where and getting there: A human navigation network. Science, 280(5365), 921–924.

    Article  PubMed  Google Scholar 

  • Maguire, E. A., Frith, C. D., et al. (1998). Knowing where things are: Parahippocampal involvement in encoding object relations in virtual large-scale space. Journal of Cognitive Neuroscience, 10(1), 61–76.

    Article  PubMed  Google Scholar 

  • Martin, A. (1999). Automatic activation of the medial temporal lobe during encoding: Lateralized influences of meaning and novelty. Hippocampus, 9(1), 62–70.

    Article  PubMed  Google Scholar 

  • Milner, B. (1965). Memory disturbances after bilateral hippocampal lesions. In P. Milner & S. Glickman (Eds.), Cognitive processes and the brain. Princeton, NJ: D. Van Nostrand.

    Google Scholar 

  • Montaldi, D., Mayes, A. R., et al. (1998). Associative encoding of pictures activates the medial temporal lobes. Human Brain Mapping, 6(2), 85–104.

    Article  PubMed  Google Scholar 

  • Morris, R. G., Garrud, P., et al. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.

    Google Scholar 

  • Mumby, D. G., Astur, R. S., et al. (1999). Retrograde amnesia and selective damage to the hippocampal formation: Memory for places and object discriminations. Behavioral Brain Research, 106(1–2), 97–107.

    Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon.

    Google Scholar 

  • Olton, D., Becker, J., et al. (1979). Hippocampus, sapce, and memory. Behavioral and Brain Sciences, 2, 313–366.

    Google Scholar 

  • Rudy, J. W., & Sutherland, R. J. (1995). Configural association theory and the hippocampal formation: An appraisal and reconfiguration. Hippocampus, 5(5), 375–389.

    Article  PubMed  Google Scholar 

  • Sanchez-Arroyos, R., Gaztelu, J. M., et al. (1993). Hippocampal and entorhinal glucose metabolism in relation to cholinergic theta rhythm. Brain Research Bulletin, 32(2), 171–178.

    Article  PubMed  Google Scholar 

  • Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neuropsychiatry and Clinical Neurosciences, 12(1), 103–113.

    Google Scholar 

  • Sejnowski, T. J., Koch, C., et al. (1990). Computational neuroscience. In S. J. Hanson & C. R. Olson (Eds.), Connectionist modeling and brain function: The developing interface. Neural network modeling and connectionism (pp. 5–35). Cambridge, MA: MIT Press.

    Google Scholar 

  • Shelton, A. L., & Gabrieli, J. D. E. (2004). Neural correlates of individual differences in spatial learning strategies. Neuropsychology, 18(3), 442–449.

    Article  PubMed  Google Scholar 

  • Sherry, D. F., Jacobs, L. F., & Gualin, S. J. C. (1992). Spatial memory and adaptive specialization fo the hippocampus. Trends in Neurosciences, 15(8), 298–303.

    Article  PubMed  Google Scholar 

  • Stern, C. E., & Hasselmo, M. E. (1999). Bridging the gap: Integrating cellular and functional magnetic resonance imaging studies of the hippocampus. Hippocampus, 9(1), 45–53.

    Article  PubMed  Google Scholar 

  • St. Germain, S. A., Stevens, M., et al. (2004). Virtual navigation in patients with postraumatic stress disorder. San Francisco, CA: Society for Neuroscience.

    Google Scholar 

  • Taylor, L. B. (1969). Localization of cerebral lesions by psychological testing. Clinical Neurosurgery, 16, 269–287.

    PubMed  Google Scholar 

  • Uecker, A., Barnes, C. A., et al. (1997). Hippocampal glycogen metabolism, EEG, and behavior. Behavioral Neuroscience, 111(2), 283–291.

    Article  PubMed  Google Scholar 

  • Velakoulis, D., Stuart, G. W., et al. (2001). Selective bilateral hippocampal volume loss in chronic schizophrenia. Biological Psychiatry, 50(7), 531–539.

    Article  PubMed  Google Scholar 

  • Waldvogel, D., van Gelderen, P., et al. (2000). The variability of serial fMRI data: Correlation between a visual and a motor task. Neuroreport: For Rapid Communication of Neuroscience Research, 11(17), 3843–3847.

    Google Scholar 

  • Walker, J. A., & Olton, D. S. (1979). Spatial memory deficit following fimbria-fornix lesions: Independent of time for stimulus processing. Physiology and Behavior, 23(1), 11–15.

    Article  PubMed  Google Scholar 

  • Wiebe, S. P., & Staeubli, U. V. (2001). Recognition memory correlates of hippocampal theta cells. Journal of Neuroscience, 21(11), 3955–3967.

    PubMed  Google Scholar 

  • Wood, E. R., Dudchenko, P. A., et al. (1999). The global record of memory in hippocampal neuronal activity [see comment]. Nature, 397(6720), 613–616.

    Article  PubMed  Google Scholar 

  • Zola-Morgan, S., & Squire, L. R. (1990). The neuropsychology of memory: Parallel findings in humans and nonhuman primates. Annals of the New York Academy of Sciences, 608, 434–456.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Astur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astur, R.S., St. Germain, S.A., Baker, E.K. et al. fMRI Hippocampal Activity During a VirtualRadial Arm Maze. Appl Psychophysiol Biofeedback 30, 307–317 (2005). https://doi.org/10.1007/s10484-005-6385-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-005-6385-z

Keywords

Navigation