Skip to main content
Log in

Cognitive Ergonomics in Virtual Environments: Development of an Intuitive and Appropriate Input Device for Navigating in a Virtual Maze

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

For patients suffering from mild cognitive impairments, the navigation through a virtual maze should be as intuitive and efficient as possible in order to minimize cognitive and physical strain. This paper discusses the appropriateness of interaction devices for being used for easy navigation tasks. Information gained from human centered evaluation was used to develop an intuitive and ergonomic interaction device. Two experiments examined the usability of tracked interaction devices. Usability problems with the devices are discussed. The findings from the experiments were translated into general design guidance, in addition to specific recommendations. A new device was designed on the basis of these recommendations and its usability was evaluated in a second experiment. The results were used to develop a lightweight interaction device for navigation in the virtual maze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandera, J. E., Kern, P., & Solf, J. J. (1986). Leitfaden zur Auswahl, Anordnung und Gestaltung von kraftbetonten Stellteilen. Schriftenreihe der Bundesanstalt für Arbeitsschutz, Dortmund, Fb 494. Bremerhaven: Wirtschaftsverlag NW.

  • Bowman, D. A., Johnson, D. B., & Hodges, L. F. (2001). Testbed evaluation of virtual environment interaction techniques. Presence: Teleoperators and Virtual Environments, 10(1), 75–95.

    Article  Google Scholar 

  • Bowman, D., Kruijff, E., LaViola, J., & Poupyrev, I. (2001). An introduction to 3-D user interface design. Presence: Teleoperators and Virtual Environments, 10(1), 96–108.

    Article  Google Scholar 

  • D’Cruz, M., Eastgate, R., Nichols, S., & Wilson, J. (2002). Human factors challenges. Deliverable for the EU, IST Project Future_Workspaces, IST-2001-38346.

  • Eastgate, R. (2001). The structured development of virtual environments: Enhancing functionality and interactivity. Unpublished PhD thesis, University of Nottingham, Nottingham, UK.

  • Gabbard, J., Hix, D., & Swan, E. (1999). User-centred design and evaluation of virtual environments. IEE Computer Graphics and Applications, 19, 51–59.

    Article  Google Scholar 

  • Häfner, U. (2002). Entwicklung eines kabellosen Eingabesystems für immersive Umgebungen, PhD thesis, Jost-Jetter Verlag, Heimsheim.

  • Jacob, R., Sibert, L., McFarlane, D., & Mullen, P., Jr. (1994). Integrality and separability of input devices. ACM Transactions on Computer–Human Interaction, 1(1), 3–26.

    Article  Google Scholar 

  • Kalawsky, R. (1996). Exploiting virtual reality techniques in education and training: Technological issues. Prepared for AGOCG. Advanced VR Research Center, Loughborough University of Technology. SIMA Report Series, ISSN 1356-5370.

  • Kapandji, I. A. (1992). Funktionelle Anatomie der Gelenke (2nd ed.), Bd. 1: Obere Extremitäten. Stuttgart, Germany: Ferdinand Enke Verlag.

  • Kaur, K. (1998). Designing virtual environments for usability, PhD thesis, City University London, UK.

  • Mine, M. (1995). Virtual environment interaction techniques (Technical Report TR95-018): UNC Chapel Hill CS Dept, 1995.

  • Nelson, H. (1976). A modified card sorting response sensitive to frontal lobe defects. Cortex, 12, 313–324.

    PubMed  Google Scholar 

  • Poupyrev, I., Billinghurst, M., Weghorst, S., & Ichikawa, T. (1996). The Go-Go interaction technique: Nonlinear mapping for direct manipulation in VR. In Proceedings of the ACM Symposium on User Interface Software and Technology, New York, USA, S. 79–80.

  • Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., & Carey, T. (1994). Human–Computer Interaction. Wokingham, UK: Addison-Wesley.

    Google Scholar 

  • Roessler, A. (2001). Ein System für die Entwicklung von räumlichen Benutzungsschnittstellen. (IPA-IAO Forschung und Praxis; 334). Zugl.: Stuttgart, University, Dissertation, 2001. Jost-Jetter; ISBN:3-931388-59-X.

  • Stefani, O., Hoffmann, H., & Rauschenbach, J. (2003). Design of interaction devices for optical tracking in immersive environments. In Proceedings of the HCII2003, June 22–27, 2003, Crete, Greece.

  • Stefani, O., Patel, H., Haselberger, F., Wiederhold, B., & Bullinger, A. (2005). Developing interaction devices with 6 DOF for virtual environments. In Proceedings of the HCII2005, Las Vegas, USA.

  • Wilson, J. R., Eastgate, R. M., & D’Cruz, M. (2002). Structured development of virtual environments. In K. Stanney (Ed.), Handbook of Virtual Environments (pp. 353–378). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Zhai, S. (1998). User performance in relation to 3D input device design. ACM Computer Graphics, 32(4), 50–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Stefani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefani, O., Mager, R., Mueller-Spahn, F. et al. Cognitive Ergonomics in Virtual Environments: Development of an Intuitive and Appropriate Input Device for Navigating in a Virtual Maze. Appl Psychophysiol Biofeedback 30, 259–269 (2005). https://doi.org/10.1007/s10484-005-6382-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-005-6382-2

Keywords

Navigation