Skip to main content
Log in

The semi-analytical modeling and vibration reduction analysis of the cylindrical shell with piezoelectric shunt damping patches

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch (PSDP) is created. The model is universal and can simulate the vibration characteristic of the shell under different states including the states in which PSDP cannot be connected, partially connected, and completely connected to the shunt circuit. The equivalent loss factor and elastic modulus with frequency dependence are proposed to consider the electrical damping effect of resistance shunt circuits. Moreover, the semi-analytical dynamic equation of the cylindrical shell with PSDP is derived by the Lagrange equation. An experimental test is carried out on the cylindrical shell with PSDP to verify the vibration suppression ability of PSDP on the cylindrical shell and the correctness of the proposed model. Furthermore, the parameter analysis shows that determining the appropriate resistance value in the shunt circuit can achieve a good vibration suppression effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DU, D. X., SUN, W., YAN, X. F., LIU, H. H., XU, K. P., and QIN, Z. Y. Modeling and analysis of nonlinear vibrations for a coupling hard-coated ring disc-cylindric shell structure under piecewise-continuous coupling conditions. International Journal of Mechanical Sciences, 215, 106940 (2022)

    Article  Google Scholar 

  2. YANG, C. M., JIN, G. Y., LIU, Z. G., WANG, X. R., and MIAO, X. H. Vibration and damping analysis of thick sandwich cylindrical shells with a viscoelastic core under arbitrary boundary conditions. International Journal of Mechanical Sciences, 92, 162–177 (2015)

    Article  Google Scholar 

  3. XU, K. P., CHEN, Z. S., and SUN, W. Optimization of position, size and thickness of viscoelastic damping patch for vibration reduction of a cylindrical shell structure. Composite Structures, 276, 114573 (2021)

    Article  Google Scholar 

  4. PLATTENBURG, J., DREYER, J., and SINGH, R. Vibration control of a cylindrical shell with concurrent active piezoelectric patches and passive cardboard liner. Mechanical Systems and Signal Processing, 91(3), 422–437 (2016)

    Google Scholar 

  5. YAN, B., WANG, K., HU, Z. F., WU, C. Y., and ZHANG, X. N. Shunt damping vibration control technology: a review. Applied Sciences, 7(5), 494 (2017)

    Article  Google Scholar 

  6. JUNIOR, V. L., STEFFEN, V., and SAVI, M. A. Piezoelectric structural vibration control. Dynamics of Smart Systems and Structures, 12, 289–309 (2016)

    Google Scholar 

  7. GRIPP, J. A. B. and RADE, D. A. Vibration and noise control using shunted piezoelectric transducers: a review. Mechanical Systems and Signal Processing, 112, 359–383 (2018)

    Article  Google Scholar 

  8. YANG, Z., SUN, L., ZHANG, C. L., ZHANG, C. Z., and GAO, C. F. Analysis of a composite piezoelectric semiconductor cylindrical shell under the thermal loading. Mechanics of Materials, 164, 104153 (2022)

    Article  Google Scholar 

  9. BO, L. D., HE, H. N., GARDONIO, P., LI, Y., and JIANG, J. Z. Design tool for elementary shunts connected to piezoelectric patches set to control multi-resonant flexural vibrations. Journal of Sound and Vibration, 520, 116554 (2022)

    Article  Google Scholar 

  10. PERNOD, L., LOSSOUARN, B., ASTOLFI, J. A., and DEU, J. F. Vibration damping of marine lifting surfaces with resonant piezoelectric shunts. Journal of Sound and Vibration, 496, 115921 (2021)

    Article  Google Scholar 

  11. MOTLAGH, P. L., BEDIZ, B., and BASDOGAN, I. A spectral Chebyshev solution for electromechanical analysis of thin curved panels with multiple integrated piezo-patches. Journal of Sound and Vibration, 486, 115612 (2020)

    Article  Google Scholar 

  12. ARAÚJO, A. L. and MADEIRA, J. F. A. Optimal passive shunted damping configurations for noise reduction in sandwich panels. Journal of Vibration and Control, 26(13–14), 1110–1118 (2020)

    Article  MathSciNet  Google Scholar 

  13. KERBOUA, M., MEGNOUNIF, A., BENGUEDIAB, M., BENRAHOU, K. H., and KAOULALA, F. Vibration control beam using piezoelectric-based smart materials. Composite Structures, 123, 430–442 (2015)

    Article  Google Scholar 

  14. HE, J. C., TAN, X., TAO, W., WU, X. H., HE, H., and CHEN, G. P. Reduction of structural vibrations with the piezoelectric stacks ring. International Journal of Applied Electromagnetics and Mechanics, 64(1–4), 729–736 (2020)

    Article  Google Scholar 

  15. CROSS, C. J. and FLEETER, S. Shunted piezoelectrics for passive control of turbomachine blading flow-induced vibrations. Smart Materials and Structures, 11(2), 239–248 (2002)

    Article  Google Scholar 

  16. NEUBAUER, M. and WALLASCHECK, J. Vibration damping with shunted piezoceramics: fundamentals and technical applications. Mechanical Systems and Signal Processing, 36(1), 36–52 (2013)

    Article  Google Scholar 

  17. LYU, X. F., CHEN, F., REN, Q. Q., TANG, Y., DING, Q., and YANG, T. Z. Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid. Acta Mechanica Solida Sinica, 33(6), 770–780 (2020)

    Article  Google Scholar 

  18. LIU, J., LI, L., HUANG, X., and JEZEQUEL, L. Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor. Mechanical Systems and Signal Processing, 95, 425–445 (2017)

    Article  Google Scholar 

  19. THORP, O., RUZZENE, M., and BAZ, A. Attenuation of wave propagation in fluid-loaded shells with periodic shunted piezoelectric rings. Smart Structures and Materials, 14(4), 594–604 (2005)

    Article  Google Scholar 

  20. YIN, D. J., YI, K. J., LIU, Z. Y., ZHANG, A. F., and ZHU, R. Design of cylindrical metashells with piezoelectric materials and digital circuits for multi-modal vibration control. Frontiers in Physics, 10, 958141 (2022)

    Article  Google Scholar 

  21. SARAVANOS, D. A. Passively damped laminated piezoelectric shell structures with integrated electric networks. AIAA Journal, 38(7), 1260–1268 (2000)

    Article  Google Scholar 

  22. LI, H., WANG, Z. H., LYU, H. Y., ZHOU, Z. X., HAN, Q. K., LIU, J. G., and QIN, Z. Y. Nonlinear vibration analysis of fiber reinforced composite cylindrical shells with partial constrained layer damping treatment. Thin-Walled Structures, 157, 107000 (2020)

    Article  Google Scholar 

  23. SONG, X. Y., CAO, T. N., GAO, P. X., and HAN, Q. K. Vibration and damping analysis of cylindrical shell treated with viscoelastic damping materials under elastic boundary conditions via a unified Rayleigh-Ritz method. International Journal of Mechanical Sciences, 165, 105158 (2020)

    Article  Google Scholar 

  24. TASKIN, M., ARIKOGLU, A., and DEMIR, O. Vibration and damping analysis of sandwich cylindrical shells by the GDQM. AIAA Journal, 57(7), 3040–3051 (2019)

    Article  Google Scholar 

  25. JIN, G. Y., YANG, C. M., LIU, Z. G., GAO, S. Y., and ZHANG, C. Y. A unified method for the vibration and damping analysis of constrained layer damping cylindrical shells with arbitrary boundary conditions. Composite Structures, 130, 124–142 (2015)

    Article  Google Scholar 

  26. DU, D. X., SUN, W., YAN, X. F., and XU, K. P. Free vibration analysis of rotating thin-walled cylindrical shells with hard coating based on Rayleigh-Ritz method. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 235(10), 1170–1186 (2021)

    Article  Google Scholar 

  27. VIDOLI, S. and DELL’ISOLA, F. Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks. European Journal of Mechanics-A/Solids, 20(3), 435–456 (2001)

    Article  MATH  Google Scholar 

  28. PORFIRI, M., DELL’ISOLA, F., and MASCIOLI, F. M. F. Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers. International Journal of Circuit Theory and Applications, 32(4), 167–198 (2010)

    Article  MATH  Google Scholar 

  29. CASADEI, F., RUZZENE, M., DOZIO, L., and CUNEFARE, K. A. Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates. Smart Materials and Structures, 19(1), 015002 (2010)

    Article  Google Scholar 

  30. SPADONI, A., RUZZENE, M., and CUNEFARE, K. Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches. Journal of Intelligent Material Systems and Structures, 20(8), 979–990 (2009)

    Article  Google Scholar 

  31. TOFTEKR, J. F. and HØGSBERG, J. On the inclusion of structural loading and damping in piezoelectric shunt tuning. Journal of Sound and Vibration, 498(12), 115960 (2021)

    Article  Google Scholar 

  32. PARK, C. H. and INMAN, D. J. Enhanced piezoelectric shunt design. Shock and Vibration, 10(2), 127–133 (2003)

    Article  Google Scholar 

  33. BERARDENGO, M., HØGSBERG, J., MANZONI, S., VANALI, M., BRANDT, A., and GODI, T. LRLC-shunted piezoelectric vibration absorber. Journal of Sound and Vibration, 474, 115268 (2020)

    Article  Google Scholar 

  34. GARDONIO, P., ZIENTEK, M., and BO, L. D. Panel with self-tuning shunted piezoelectric patches for broadband flexural vibration control. Mechanical Systems and Signal Processing, 134, 106299 (2019)

    Article  Google Scholar 

  35. JUNIOR, C. D. M., ERTURK, A., and INMAN, D. J. An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration, 327(1–2), 9–25 (2009)

    Article  Google Scholar 

  36. THOMAS, O., DUCARNE, J., and DEU, J. F. Performance of piezoelectric shunts for vibration reduction. Smart Materials and Structures, 21(1), 015008 (2011)

    Article  Google Scholar 

  37. HU, J. Y., LI, Z. H., SUN, Y., and LI, Q. H. Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator. Chinese Physics B, 25(12), 127701 (2016)

    Article  Google Scholar 

  38. DAVIS, C. L. and LESIEUTRE, G. A. A modal strain energy approach to the prediction of resistively shunted piezoceramic damping. Journal of Sound and Vibration, 184(1), 129–139 (1995)

    Article  MATH  Google Scholar 

  39. LIAO, Y. B. and SODANO, H. A. Piezoelectric damping of resistively shunted beams and optimal parameters for maximum damping. Journal of Vibration and Acoustics, 132(4), 041014 (2010)

    Article  Google Scholar 

  40. FEIN, O. M. and GAUL, L. On the application of shunted piezoelectric material to enhance structural damping of a plate. Journal of Intelligent Material Systems and Structures, 15(9–10), 737–743 (2004)

    Article  Google Scholar 

  41. BISHEH, H., RABCZUK, T., and WU, N. Effects of nanotube agglomeration on wave dynamics of carbon nanotube-reinforced piezocomposite cylindrical shells. Composites Part B, 187, 107739 (2020)

    Article  Google Scholar 

  42. LI, M., SUN, W., LIU, Y., and MA, H. W. Influence analysis of control signal phase on the vibration reduction effect of active constrained layer damping. Applied Acoustics, 190, 108658 (2022)

    Article  Google Scholar 

  43. HAGOOD, N. W. and FLOTOW, A. V. Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration, 146(2), 243–268 (1991)

    Article  Google Scholar 

  44. FERNANDES, A. and POUGET, J. Structural response of composite plates equipped with piezoelectric actuators. Computers and Structures, 84(22–23), 1459–1470 (2006)

    Article  Google Scholar 

  45. CHAI, Q. D., WANG, Y. Q., and TENG, M. W. Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions. Applied Mathematics and Mechanics (English Edition), 43(8), 1203–1218 (2022) https://doi.org/10.1007/s10483-022-2892-7

    Article  MathSciNet  MATH  Google Scholar 

  46. LI, C. F., LI, P. Y., ZHANG, Z. X., and WEN, B. C. Optimal locations of discontinuous piezoelectric laminated cylindrical shell with point supported elastic boundary conditions for vibration control. Composite Structures, 233, 111575 (2020)

    Article  Google Scholar 

  47. SHENG, G. G. and WANG, X. Nonlinear vibration control of functionally graded laminated cylindrical shells. Composites Part B: Engineering, 52, 1–10 (2013)

    Article  Google Scholar 

  48. SUN, S. P., CAO, D. Q., and HAN, Q. K. Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh-Ritz method. International Journal of Mechanical Sciences, 68, 180–189 (2013)

    Article  Google Scholar 

  49. CHEN, Z. S., DU, D. X., and SUN, W. Solution of nonlinear eigenvalues for the viscoelastic damped cylindrical shell considering the frequency dependence of viscoelastic materials. Thin-Walled Structures, 173, 109013 (2022)

    Article  Google Scholar 

  50. ZHANG, D. G. The Lagrange dynamic equations of multi-rigidbody systems with external shocks. Applied Mathematics and Mechanics (English Edition), 17(6), 589–595 (1996) https://doi.org/10.1007/BF00119758

    Article  MATH  Google Scholar 

  51. DU, X. K., CHEN, Y. Z., ZHANG, J., GUO, X., LI, L., and ZHANG, D. G. Nonlinear coupling modeling and dynamics analysis of rotating flexible beams with stretching deformation effect. Applied Mathematics and Mechanics (English Edition), 44(1), 125–140 (2023) https://doi.org/10.1007/s10483-023-2951-9

    Article  MathSciNet  MATH  Google Scholar 

  52. YIN, T. T., DENG, Z. C., HU, W. P., and WANG, X. D. Dynamic modeling and simulation of deploying process for space solar power satellite receiver. Applied Mathematics and Mechanics (English Edition), 39(2), 261–274 (2018) https://doi.org/10.1007/s10483-2293-6

    Article  MathSciNet  Google Scholar 

  53. BILASSE, M., DAYA, E. M., and AZRAR, L. Linear and nonlinear vibrations analysis of viscoelastic sandwich beams. Journal of Sound and Vibration, 329(23), 4950–4969 (2010)

    Article  Google Scholar 

  54. SHI, Y. M., SOL, H., and HUA, H. X. Material parameter identification of sandwich beams by an inverse method. Journal of Sound and Vibration, 290(3), 1234–1255 (2006)

    Article  Google Scholar 

  55. KIM, S. Y. and LEE, D. H. Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs. Journal of Sound and Vibration, 324(3–5), 570–586 (2009)

    Article  Google Scholar 

  56. MARANO, G. C., QUARANTA, G., and MONTI, G. Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements. Computer-Aided Civil and Infrastructure Engineering, 26(2), 92–110 (2011)

    Article  Google Scholar 

  57. LIU, X. D., SUN, W., and GAO, Z. H. Optimization of hoop layouts for reducing vibration amplitude of pipeline system using the semi-analytical model and genetic algorithm. IEEE Access, 8, 224394–224408 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (No. 12272087)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, D., Yang, J., Sun, W. et al. The semi-analytical modeling and vibration reduction analysis of the cylindrical shell with piezoelectric shunt damping patches. Appl. Math. Mech.-Engl. Ed. 44, 1675–1700 (2023). https://doi.org/10.1007/s10483-023-3034-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3034-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation