Skip to main content
Log in

Analytical study of pulsatile mixed electroosmotic and shear-driven flow in a microchannel with a slip-dependent zeta potential

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The escalation of zeta potential by the influence of wall slip for the electrokinetically modulated flow through a microchannel motivates to consider the impact of hydrodynamic slippage upon the zeta or surface potential. The reported study undergoes an analytical exploration of the pulsatile electroosmosis and shear-actuated flow characteristics of a fluid with a Newtonian model through a microchannel with parallel plates by invoking the reliance of a zeta or surface potential on slippage. The linearized Poisson-Boltzmann and momentum equations are solved analytically to obtain the explicit expression of the electrical potential induced in the electrical double layer (EDL), the flow velocity field, and the volumetric flow rate for an extensive span of parameters. The velocity field proximal to the microchannel wall is observed to enhance by an apparent zeta potential, and is further escalated for a thinner EDL and an oscillating electric field with a higher amplitude. However, near the core region of the microchannel, the flow velocity becomes invariant with the EDL thickness. The result shows that the lower wall velocity contributes to the flow velocity along with the electroosmotic body force and the impact of the velocity of the wall underneath diminishes proximal to the upper wall. Moreover, the volumetric flow rate increases when the thickness of the EDL decreases, owing to the influence of the wall slip. However, for thinner EDLs and medium and higher oscillating Reynolds numbers, the volumetric flow rate varies non-monotonously, correlative to the slip-free and slip cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI, D. Electrokinetics in Microfluidics, Elsevier, Amsterdam (2004)

    Google Scholar 

  2. MA, C., PENG, Y., LI, H., and CHEN, W. Organ-on-a-chip: a new paradigm for drug development. Trends in Pharmacological Sciences, 42, 119–133 (2021)

    Article  Google Scholar 

  3. WU, Q., LIU, J., WANG, X., FENG, L., WU, J., ZHU, X., WEN, W., and GONG, X. Organ-on-a-chip: recent breakthroughs and future prospects. Biomedical Engineering Online, 19, 9 (2020)

    Article  Google Scholar 

  4. LI, D. Encyclopedia of Microfluidics and Nanofluidics, Springer Science & Business Media, Berlin (2008)

    Book  Google Scholar 

  5. YU, Y. S., WANG, M. C., and HUANG, X. Evaporative deposition of polystyrene microparticles on PDMS surface. Scientific Reports, 7, 14118 (2017)

    Article  Google Scholar 

  6. LI, P., HUANG, X., and ZHAO, Y. P. Active control of electro-visco-fingering in Hele-Shaw cells using Maxwell stress. iScience, 25, 105204 (2022)

    Article  Google Scholar 

  7. WANG, F. C. and ZHAO, Y. P. Slip boundary conditions based on molecular kinetic theory: the critical shear stress and the energy dissipation at the liquid-solid interface. Soft Matter, 7, 8628–8634 (2011)

    Article  Google Scholar 

  8. CHOI, C. H., ULMANELLA, U., KIM, J., HO, C. M., and KIM, C. J. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Physics of Fluids, 18, 087105 (2006)

    Article  Google Scholar 

  9. COTTIN-BIZONNE, C., CROSS, B., STEINBERGER, A., and CHARLAIX, E. Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Physical Review Letters, 94, 056102 (2005)

    Article  Google Scholar 

  10. NILSSON, M. A., DANIELLO, R. J., and ROTHSTEIN, J. P. A novel and inexpensive technique for creating superhydrophobic surfaces using teflon and sandpaper. Journal of Physics D: Applied Physics, 43, 045301 (2010)

    Article  Google Scholar 

  11. LI, P., XU, X., YU, Y., WANG, L., and JI, B. Biased motions of a droplet on the inclined micro-conical superhydrophobic surface. ACS Applied Materials & Interfaces, 13, 27687–27695 (2021)

    Article  Google Scholar 

  12. JOLY, L., YBERT, C., TRIZAC, E., and BOCQUET, L. Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. The Journal of Chemical Physics, 125, 204716 (2006)

    Article  Google Scholar 

  13. TANDON, V. and KIRBY, B. J. Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. slip and interfacial water structure. Electrophoresis, 29, 1102–1114 (2008)

    Article  Google Scholar 

  14. SOONG, C. Y., HWANG, P. W., and WANG, J. C. Analysis of pressure-driven electrokinetic flows in hydrophobic microchannels with slip-dependent zeta potential. Microfluidics and Nanofluidics, 9, 211–223 (2010)

    Article  Google Scholar 

  15. VASISTA, K. N., MEHTA, S. K., PATI, S., and SARKAR, S. Electroosmotic flow of viscoelastic fluid through a microchannel with slip-dependent zeta potential. Physics of Fluids, 33, 123110 (2021)

    Article  Google Scholar 

  16. BANERJEE, D., MEHTA, S. K., PATI, S., and BISWAS, P. Analytical solution to heat transfer for mixed electroosmotic and pressure-driven flow through a microchannel with slip-dependent zeta potential. International Journal of Heat and Mass Transfer, 181, 121989 (2021)

    Article  Google Scholar 

  17. BANERJEE, D., PATI, S., and BISWAS, P. Analytical study of two-layered mixed electro-osmotic and pressure-driven flow and heat transfer in a microchannel with hydrodynamic slippage and asymmetric wall heating. Physics of Fluids, 34, 032013 (2022)

    Article  Google Scholar 

  18. LI, F., JIAN, Y., CHANG, L., ZHAO, G., and YANG, L. Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel. Colloids and Surfaces B: Biointerfaces, 147, 234–241 (2016)

    Article  Google Scholar 

  19. PERALTA, M., BAUTISTA, O., MÉNDEZ, F., and BAUTISTA, E. Pulsatile electroosmotic flow of a Maxwell fluid in a parallel flat plate microchannel with asymmetric zeta potentials. Applied Mathematics and Mechanics (English Edition), 39, 667–684 (2018) https://doi.org/10.1007/s10483-018-2328-6

    Article  MathSciNet  Google Scholar 

  20. PERALTA, M., ARCOS, J., MÉNDEZ, F., and BAUTISTA, O. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials. Fluid Dynamics Research, 49, 035514 (2017)

    Article  Google Scholar 

  21. MOGHADAM, A. J. Exact solution of AC electro-osmotic flow in a microannulus. Journal of Fluids Engineering, 135, 091201 (2013)

    Article  Google Scholar 

  22. KIM, H., KHAN, A. I., and DUTTA, P. Time-periodic electro-osmotic flow with nonuniform surface charges. Journal of Fluids Engineering, 141, 081201 (2019)

    Article  Google Scholar 

  23. DAWN, S. and SARKAR, S. Control of mass flow-rate of viscoelastic fluids through time-periodic electro-osmotic flows in a microchannel. Journal of Fluids Engineering, 143, 111209 (2021)

    Article  Google Scholar 

  24. CHUCHARD, P., ORANKITJAROEN, S., and WIWATANAPATAPHEE, B. Study of pulsatile pressure-driven electroosmotic flows through an elliptic cylindrical microchannel with the Navier slip condition. Advances in Difference Equations, 2017, 160 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. WANG, S. and ZHAO, M. Closed-form solutions of transient electro-osmotic flow driven by AC electric field in a microannulus. Boundary Value Problems, 2014, 215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. ROJAS, G., ARCOS, J., PERALTA, M., MÉNDEZ, F., and BAUTISTA, O. Pulsatile electroosmotic flow in a microcapillary with the slip boundary condition. Colloids Surfaces A: Physicochemical and Engineering Aspects, 513, 57–65 (2017)

    Article  Google Scholar 

  27. CHAKRABORTY, S. and RAY, S. Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels. Physics of Fluids, 20, 083602 (2008)

    Article  MATH  Google Scholar 

  28. JIAN, Y., YANG, L., and LIU, Q. Time periodic electro-osmotic flow through a microannulus. Physics of Fluids, 22, 042001 (2010)

    Article  MATH  Google Scholar 

  29. SRIVASTAVA, A. and CHAKRABORTY, S. Time periodic electroosmotic flow between oscillating boundaries in narrow confinements. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2, 61–73 (2010)

    Article  Google Scholar 

  30. YANG, J. and KWOK, D. Y. A new method to determine zeta potential and slip coefficient simultaneously. The Journal of Physical Chemistry B, 106, 12851–12855 (2002)

    Article  Google Scholar 

  31. CHURAEV, N. V., RALSTON, J., SERGEEVA, I. P., and SOBOLEV, V. D. Electrokinetic properties of methylated quartz capillaries. Advances in Colloid and Interface Science, 96, 265–278 (2002)

    Article  Google Scholar 

  32. BOUZIGUES, C. I., TABELING, P., and BOCQUET, L. Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Physical Review Letters, 101, 114503 (2008)

    Article  Google Scholar 

  33. JOLY, L., YBERT, C., TRIZAC, E., and BOCQUET, L. Hydrodynamics within the electric double layer on slipping surfaces. Physical Review Letters, 93, 257805 (2004)

    Article  Google Scholar 

  34. SABOORIAN-JOOYBARI, H. and CHEN, Z. Calculation of re-defined electrical double layer thickness in symmetrical electrolyte solutions. Results in Physics, 15, 102501 (2019)

    Article  Google Scholar 

  35. HATSUKI, R., YUJIRO, F., and YAMAMOTO, T. Direct measurement of electric double layer in a nanochannel by electrical impedance spectroscopy. Microfluidics and Nanofluidics, 14, 983–988 (2013)

    Article  Google Scholar 

  36. BERG, S., CENSE, A. W., HOFMAN, J. P., and SMITS, R. M. M. Flow in porous media with slip boundary condition. Transport in Porous Media, 74, 275–292 (2008)

    Article  Google Scholar 

  37. LIU, Q. S., JIAN, Y. J., and YANG, L. G. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates. Journal of Non-Newtonian Fluid Mechanics, 166, 478–486 (2011)

    Article  MATH  Google Scholar 

  38. AFONSO, A. M., ALVES, M. A., and PINHO, F. T. Electro-osmotic flow of viscoelastic fluids in microchannels under asymmetric zeta potentials. Journal of Engineering Mathematics, 71, 15–30 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. KAUSHIK, P., PATI, S., SOM, S. K., and CHAKRABORTY, S. Hydrodynamic swirl decay in microtubes with interfacial slip. Nanoscale and Microscale Thermophysical Engineering, 16, 133–143 (2012)

    Article  Google Scholar 

  40. MISRA, J. C., CHANDRA, S., SHIT, G. C., and KUNDU, P. K. Electroosmotic oscillatory flow of micropolar fluid in microchannels: application to dynamics of blood flow in microfluidic devices. Applied Mathematics and Mechanics (English Edition), 35(6), 749–766 (2014) https://doi.org/10.1007/s10483-014-1827-6

    Article  MathSciNet  MATH  Google Scholar 

  41. DING, Z., JIAN, Y., and YANG, L. Time periodic electroosmotic flow of micropolar fluids through microparallel channel. Applied Mathematics and Mechanics (English Edition), 37(6), 769–786 (2016) https://doi.org/10.1007/s10483-016-2081-6

    Article  MathSciNet  MATH  Google Scholar 

  42. HAYAT, T., AFZAL, S., and HENDI, A. Exact solution of electroosmotic flow in generalized Burgers fluid. Applied Mathematics and Mechanics (English Edition), 32(9), 1119–1126 (2011) https://doi.org/10.1007/s10483-011-1486-6

    Article  MathSciNet  MATH  Google Scholar 

  43. BANERJEE, D., PATI, S., and BISWAS, P. Analysis of electroviscous effect and heat transfer for flow of non-Newtonian fluids in a microchannel with surface charge-dependent slip at high zeta potential. Physics of Fluids, 34, 112016 (2022)

    Article  Google Scholar 

  44. MAHANTA, K., PANDA, S., BANERJEE, D., PATI, S., and BISWAS, P. Analysis of pulsatile combined electroosmotic and shear-driven flow of generalized Maxwell fluids in a microchannel with slip-dependent zeta potential. Physica Scripta, 98(1), 015212 (2022)

    Article  Google Scholar 

  45. NATH, A. J., ROY, P., BANERJEE, D., PATI, S., RANDIVE, P. R., and BISWAS, P. Analytical solution to time-periodic electro-osmotic flow of generalized Maxwell fluids in parallel plate microchannel with slip-dependent zeta potential. Journal of Fluids Engineering, 145(1), 014501 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pati.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, D., Pati, S. & Biswas, P. Analytical study of pulsatile mixed electroosmotic and shear-driven flow in a microchannel with a slip-dependent zeta potential. Appl. Math. Mech.-Engl. Ed. 44, 1007–1022 (2023). https://doi.org/10.1007/s10483-023-3010-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3010-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation