Skip to main content
Log in

Symplectic analysis for regulating wave propagation in a one-dimensional nonlinear graded metamaterial

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An analytical method, called the symplectic mathematical method, is proposed to study the wave propagation in a spring-mass chain with gradient arranged local resonators and nonlinear ground springs. Combined with the linearized perturbation approach, the symplectic transform matrix for a unit cell of the weakly nonlinear graded metamaterial is derived, which only relies on the state vector. The results of the dispersion relation obtained with the symplectic mathematical method agree well with those achieved by the Bloch theory. It is shown that wider and lower frequency bandgaps are formed when the hardening nonlinearity and incident wave intensity increase. Subsequently, the displacement response and transmission performance of nonlinear graded metamaterials with finite length are studied. The dual tunable effects of nonlinearity and gradation on the wave propagation are explored under different excitation frequencies. For small excitation frequencies, the gradient parameter plays a dominant role compared with the nonlinearity. The reason is that the gradient tuning aims at the gradient arrangement of local resonators, which is limited by the critical value of the local resonator mass. In contrast, for larger excitation frequencies, the hardening nonlinearity is dominant and will contribute to the formation of a new bandgap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. HUSSEIN, M. I., LEAMMY, M. J., and RUZZENE, M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Applied Mechanics Reviews, 66(4), 040802 (2014)

    Article  Google Scholar 

  2. LIAO, G. X., LUAN, C. C., WANG, Z. W., LIU, J. P., YAO, X. H., and FU, J. Z. Acoustic wave filtering strategy based on gradient acoustic metamaterials. Journal of Physics D: Applied Physics, 54(33), 335301 (2021)

    Article  Google Scholar 

  3. ZHU, R., LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. Achiral elastic metamaterial beam for broadband vibration suppression. Journal of Sound and Vibration, 333(10), 2759–2773 (2014)

    Article  Google Scholar 

  4. COLOMBI, A., ROUX, P., GUENNEAU, S., GUEGUEN, P., and CRASTER, R. V. Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Scientific Reports, 6, 19238 (2016)

    Article  Google Scholar 

  5. QI, S. B., OUDICH, M., LI, Y., and ASSOUAR, B. Acoustic energy harvesting based on a planar acoustic metamaterial. Applied Physics Letters, 108(26), 263501 (2016)

    Article  Google Scholar 

  6. LIU, Z., ZHANG, X., MAO, Y., ZHU, Y., YANG, Z., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289(5485), 1734–1736 (2000)

    Article  Google Scholar 

  7. BAE, M. H. and OH, J. H. Amplitude-induced bandgap: new type of bandgap for nonlinear elastic metamaterials. Journal of the Mechanics and Physics of Solids, 139, 103930 (2020)

    Article  MathSciNet  Google Scholar 

  8. ZHU, H. P. and CHEN, H. Y. Parameter modulation of periodic waves and solitons in metamaterials with higher-order dispersive and nonlinear effects. Nonlinear Dynamics, 104(2), 1545–1554 (2021)

    Article  Google Scholar 

  9. FIORE, S., FINOCCHIO, G., ZIVIERI, R., CHIAPPINI, M., and GARESCI, F. Wave amplitude decay driven by anharmonic potential in nonlinear mass-in-mass systems. Applied Physics Letters, 117(12), 124101 (2020)

    Article  Google Scholar 

  10. MANKTELOW, K., LEAMY, M. J., and RUZZENE, M. Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dynamics, 63(1–2), 193–203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. PATIL, G. U. and MATLACK, K. H. Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mechanica, 233(1), 1–46 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. BAE, M. H. and OH, J. H. Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. Mechanical Systems and Signal Processing, 170, 108832 (2022)

    Article  Google Scholar 

  13. SEPEHRI, S., MASHHADI, M. M., and FAKHRABADI, M. M. S. Dispersion curves of electromagnetically actuated nonlinear monoatomic and mass-in mass lattice chains. International Journal of Mechanical Sciences, 214, 106896 (2022)

    Article  Google Scholar 

  14. HE, C., LIM, K. M., ZHANG, F., and JIANG, J. H. Dual-tuning mechanism for elastic wave transmission in a triatomic lattice with string stiffening. Wave Motion, 112, 102951 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. HE, C., LIM, K. M., LIANG, X., ZHANG, F., and JIANG, J. H. Tunable band structures design for elastic waves transmission in tension metamaterial chain. European Journal of Mechanics/A Solids, 92, 104881 (2022)

    MathSciNet  MATH  Google Scholar 

  16. FANG, L. Z. and LEAMY, M. J. Perturbation analysis of nonlinear evanescent waves in a one-dimensional monatomic chain. Physical Review E, 105(1), 014203 (2022)

    Article  MathSciNet  Google Scholar 

  17. FORTUNATI, A., BACIGALUPO, A., LEPIDI, M., ARENA, A., and LACARBONARA, W. Nonlinear wave propagation in locally dissipative metamaterials via Hamiltonian perturbation approach. Nonlinear Dynamics, 108(2), 765–787 (2022)

    Article  Google Scholar 

  18. LIU, Y. H., YANG, J., YI, X. S., and CHRONOPOULOS, D. Enhanced suppression of low-frequency vibration transmission in metamaterials with linear and nonlinear inerters. Journal of Applied Physics, 131(10), 105103 (2022)

    Article  Google Scholar 

  19. FRONK, M. D. and LEAMY, M. J. Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials. Physical Review E, 100(3), 032213 (2019)

    Article  Google Scholar 

  20. MANKTELOW, K., LEAMY, M. J., and RUZZENE, M. Comparison of asymptotic and transfer matrix approaches for evaluating intensity-dependent dispersion in nonlinear photonic and phononic crystals. Wave Motion, 50(3), 494–508 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. ASHARI, A. K. and STEPHEN, N. G. On wave propagation in repetitive structures: two forms of transfer matrix. Journal of Sound and Vibration, 439, 99–112 (2019)

    Article  Google Scholar 

  22. ZHONG, W. X. Symplectic Solution Methodology in Applied Mechanics (in Chinese), Higher Education Press, Beijing (2006)

    Google Scholar 

  23. HOU, X. H., DENG, Z. C., and ZHOU, J. X. Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures. Applied Mathematics and Mechanics (English Edition), 31(11), 1371–1382 (2010) https://doi.org/10.1007/s10483-010-1369-7

    Article  MathSciNet  MATH  Google Scholar 

  24. HO, K. M., CHENG, C. H., YANG, Z., ZHANG, X. X., and SHENG, P. Broadband locally resonant sonic shields. Applied Physics Letters, 83(26), 5566–5568 (2003)

    Article  Google Scholar 

  25. GONG, C., FANG, X., and CHENG, L. Band degeneration and evolution in nonlinear triatomic metamaterials. Nonlinear Dynamics, 111, 97–112 (2023)

    Article  Google Scholar 

  26. CAMPANA, M. A., OUISSE, M., SADOULET-REBOUL, E., RUZZENE, M., NEILD, S., and SCARPA, F. Impact of non-linear resonators in periodic structures using a perturbation approach. Mechanical Systems and Signal Processing, 135, 106408 (2020)

    Article  Google Scholar 

  27. FANG, X., WEN, J. H., YIN, J. F., YU, D. L., and XIAO, Y. Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: theoretical study. Physical Review E, 94(5), 052206 (2016)

    Article  Google Scholar 

  28. CHEN, Z. Y., ZHOU, W. J., and LIM, C. W. Active control for acoustic wave propagation in nonlinear diatomic acoustic metamaterials. International Journal of Non-Linear Mechanics, 125, 103535 (2020)

    Article  Google Scholar 

  29. ZHOU, W. J., LI, X. P., WANG, Y. S., CHEN, W. Q., and HUANG, G. L. Spectro-spatial analysis of wave packet propagation in nonlinear acoustic metamaterials. Journal of Sound and Vibration, 413, 250–269 (2018)

    Article  Google Scholar 

  30. BANERJEE, A., DAS, R., and CALIUS, E. P. Frequency graded 1D metamaterials: a study on the attenuation bands. Journal of Applied Physics, 122(7), 075101 (2017)

    Article  Google Scholar 

  31. BANERJEE, A. Flexural waves in graded metabeam lattice. Physics Letters A, 388, 127057 (2021)

    Article  MathSciNet  Google Scholar 

  32. HU, G. B., AUSTIN, A. C. M., SOROKIN, V., and TANG, L. H. Metamaterial beam with graded local resonators for broadband vibration suppression. Mechanical Systems and Signal Processing, 146, 106982 (2021)

    Article  Google Scholar 

  33. MU, D., WANG, K. Y., SHU, H. S., and LU, J. H. Metamaterial beams with graded two-stage inertial amplification and elastic foundation. International Journal of Mechanical Sciences, 236, 107761 (2022)

    Article  Google Scholar 

  34. RICHOUX, O., DEPOLLIER, C., and HARDY, J. Propagation of mechanical waves in a one-dimensional nonlinear disordered lattice. Physical Review E, 73(2), 026611 (2006)

    Article  Google Scholar 

  35. YOUSEFZADEH, B. and PHANI, A. S. Supratransmission in a disordered nonlinear periodic structure. Journal of Sound and Vibration, 380, 242–266 (2016)

    Article  Google Scholar 

  36. HAO, S. M., WU, Z. J., LI, F. M., and ZHANG, C. Z. Enhancement of band-gap characteristics in disordered elastic metamaterial multi-span beams: theory and experiment. Mechanics Research Communications, 113, 103692 (2021)

    Article  Google Scholar 

  37. CELLI, P., YOUSEFZADEH, B., DARAIO, C., and GONELLA, S. Bandgap widening by disorder in rainbow metamaterials. Applied Physics Letters, 114(9), 091903 (2019)

    Article  Google Scholar 

  38. LIU, Y. J., HAN, C. Y., and LIU, D. Y. Broadband vibration suppression of graded/disorder piezoelectric metamaterials. Mechanics of Advanced Materials and Structures, 30(4), 710–723 (2022)

    Article  Google Scholar 

  39. LI, Y., BAKER, E., REISSMAN, T., SUN, C., and LIU, W. K. Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting. Applied Physics Letters, 111(25), 251903 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zichen Deng.

Additional information

Citation: ZHAO, Y. P., HOU, X. H., ZHANG, K., and DENG, Z. C. Symplectic analysis for regulating wave propagation in a one-dimensional nonlinear graded metamaterial. Applied Mathematics and Mechanics (English Edition), 44(5), 745–758 (2023) https://doi.org/10.1007/s10483-023-2985-6

Project supported by the National Natural Science Foundation of China (Nos. 12072266, 12172297, 11972287, and 12072262) and the Open Foundation of the State Key Laboratory of Structural Analysis for Industrial Equipment of China (No. GZ22106)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Hou, X., Zhang, K. et al. Symplectic analysis for regulating wave propagation in a one-dimensional nonlinear graded metamaterial. Appl. Math. Mech.-Engl. Ed. 44, 745–758 (2023). https://doi.org/10.1007/s10483-023-2985-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-2985-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation