Skip to main content
Log in

Effect of periodic heat transfer on the transient thermal behavior of a convective-radiative fully wet porous moving trapezoidal fin

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A moving trapezoidal profiled convective-radiative porous longitudinal fin wetted in a single-phase fluid is considered in the current article. The periodic variation in the fin base temperature is taken into account along with the temperature sensitive thermal conductivity and convective heat transfer coefficients. The modeled problem, which is resolved into a non-linear partial differential equation (PDE), is made dimensionless and solved by employing the finite difference method (FDM). The results are displayed through graphs and discussed. The effects of amplitude, frequency of oscillation, wet nature, Peclet number, and other relevant quantities on the distribution of temperature through the fin length and with the dimensionless time are investigated. It is deciphered that the periodic heat transfer gives rise to the wavy nature of the fin thermal profile against time. The analysis is beneficial in the design of fin structures for applications like solar collectors, space/airborne applications, and refrigeration industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

dimensionless thermal conductivity parameter

A b :

area of the fin base (m2)

B :

amplitude of the input temperature

C :

fin taper ratio

C T :

temperature ratio

c p :

specific heat at constant pressure (J·kg−1·K−1)

K :

permeability (m2)

L,:

length of the fin (m)

Le,:

Lewis number

N r :

radiative parameter

N c :

convective parameter

Pe :

Peclet number

T :

local fin temperature (K)

T a :

ambient temperature (K)

T b :

base temperature (K)

T bm :

average base temperature (K)

U :

uniform velocity of the fin (m·s−1)

W :

width (m)

X,:

dimensionless length

b 2 :

variable parameter (K−1)

g :

acceleration due to gravity (m·s−2)

h :

heat transfer coefficient (W·m−2·K−1)

h a :

heat transfer coefficient at the ambient temperature Ta (W·m−2·K−1)

h D :

uniform mass transfer coefficient

i fg :

latent heat of water evaporation (J·kg−1)

k eff :

effective thermal conductivity of the material (W·m−1·K−1)

m 0,m 1 :

constants

m 2 :

wet porous parameter

p :

power index of heat transfer coefficient

t * :

time (s)

t(x):

fin thickness at the distance x (m)

t b :

base thickness of the fin (m)

x :

axial coordinate of the fin (m).

ρ f :

density of the ambient fluid (kg·m−3)

τ :

dimensionless time

ν f :

kinematic viscosity of the ambient fluid (m2·s−1)

θ :

non-dimensional temperature

θ a :

dimensionless ambient temperature

ω :

humidity ratio of the saturated air

ψ * :

frequency of oscillation (s−1)

ψ :

dimensionless frequency of oscillation

ω a :

humidity ratio of the surrounding air

φ,:

porosity

α :

thermal conductivity parameter (K−1)

δ,:

a geometrical quantity that defines the tip semi-fin thickness (m)

σ,:

Stefan-Boltzmann constant (W·m−2·K−4)

ε,:

surface emissivity of the fin

β f :

volumetric thermal expansion coefficient of the ambient fluid (K−1).

a:

ambient

b:

base

f:

fluid.

References

  1. AZIZ, A. and MAKINDE, O. D. Heat transfer and entropy generation in a two-dimensional orthotropic convection pin fin. International Journal of Exergy, 7, 579–592 (2010)

    Article  Google Scholar 

  2. GORLA, R. S. R. and BAKIER, A. Y. Thermal analysis of natural convection and radiation in porous fins. International Communications in Heat and Mass Transfer, 38(5), 638–645 (2011)

    Article  Google Scholar 

  3. TORABI, M., YAGHOOBI, H., and AZIZ, A. Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity. International Journal of Thermophysics, 33(5), 924–941 (2012)

    Article  Google Scholar 

  4. HATAMI, M. and GANJI, D. D. Thermal performance of circular convective-radiative porous fins with different section shapes and materials. Energy Conversion and Management, 76, 185–193 (2013)

    Article  Google Scholar 

  5. VAHABZADEH, A., GANJI, D. D., and ABBASI, M. Analytical investigation of porous pin fins with variable section in fully-wet conditions. Case Studies in Thermal Engineering, 5, 1–12 (2015)

    Article  Google Scholar 

  6. ROY, P. K., MALLICK, A., MONDAL, H., and SIBANDA, P. A modified decomposition solution of triangular moving fin with multiple variable thermal properties. Arabian Journal for Science and Engineering, 43(3), 1485–1497 (2018)

    Article  Google Scholar 

  7. FALLO, N., MOITSHEKI, R. J., and MAKINDE, O. D. Analysis of heat transfer in a cylindrical spine fin with variable thermal properties. Defect and Diffusion Forum, 387, 10–22 (2018)

    Article  Google Scholar 

  8. TURKYILMAZOGLU, M. Expanding/contracting fin of rectangular profile. International Journal of Numerical Methods for Heat & Fluid Flow, 31(4), 1057–1068 (2020)

    Google Scholar 

  9. DAS, R. and KUNDU, B. Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information. International Communications in Heat and Mass Transfer, 127, 105497 (2021)

    Article  Google Scholar 

  10. SOWMYA, G. and GIREESHA, B. J. Thermal stresses and efficiency analysis of a radial porous fin with radiation and variable thermal conductivity and internal heat generation. Journal of Thermal Analysis and Calorimetry, 147(7), 4751–4762 (2022)

    Article  Google Scholar 

  11. KHANI, F. and AZIZ, A. Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient. Communications in Nonlinear Science and Numerical Simulation, 15(3), 590–601 (2010)

    Article  Google Scholar 

  12. DAS, R. Estimation of feasible materials and thermal conditions in a trapezoidal fin using genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(13), 2356–2368 (2016)

    Article  Google Scholar 

  13. TURKYILMAZOGLU, M. Efficiency of the longitudinal fins of trapezoidal profile in motion. Journal of Heat Transfer, 139, 094501 (2017)

    Article  Google Scholar 

  14. JAYAPRAKASH, M. C., ALZAHRANI, H. A., SOWMYA, G., KUMAR, R. V., MALIK, M. Y., ALSAIARI, A., and PRASANNAKUMARA, B. C. Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant. Case Studies in Thermal Engineering, 28, 101697 (2021)

    Article  Google Scholar 

  15. GIREESHA, B. J., KEERTHI, M. L., and ESHWARAPPA, K. M. Heat transfer analysis of longitudinal fins of trapezoidal and dovetail profile on an inclined surface. Physica Scripta, 96(12), 125209 (2021)

    Article  Google Scholar 

  16. KIWAN, S. Thermal analysis of natural convection porous fins. Transport in Porous Media, 67(1), 17–29 (2007)

    Article  MathSciNet  Google Scholar 

  17. DAS, R. and OOI, K. T. Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement. Energy Conversion and Management, 66, 211–219 (2013)

    Article  Google Scholar 

  18. AHMAD, I., ZAHID, H., AHMAD, F., RAJA, M. A. Z., and BALEANU, D. Design of computational intelligent procedure for thermal analysis of porous fin model. Chinese Journal of Physics, 59, 641–655 (2019)

    Article  MathSciNet  Google Scholar 

  19. MADHURA, K. R., KALPANA, G., and MAKINDE, O. D. Thermal performance of straight porous fin with variable thermal conductivity under magnetic field and radiation effects. Heat Transfer, 49(8), 5002–5019 (2020)

    Article  Google Scholar 

  20. HATAMI, M., AHANGAR, G. R. M., GANJI, D. D., and BOUBAKER, K. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Conversion and Management, 84, 533–540 (2014)

    Article  Google Scholar 

  21. GIREESHA, B. J., SOWMYA, G., and MACHA, M. Temperature distribution analysis in a fully wet moving radial porous fin by finite element method. International Journal of Numerical Methods for Heat & Fluid Flow, 32(4), 453–468 (2019)

    Google Scholar 

  22. KRAUS, A. D., AZIZ, A., WELTY, J., and SEKULIC, D. P. Extended surface heat transfer. Applied Mechanics Reviews, 54(5), B92 (2001)

    Article  Google Scholar 

  23. KHAN, W. A. and AZIZ, A. Transient heat transfer in a functionally graded convecting longitudinal fin. Heat and Mass Transfer, 48(10), 1745–1753 (2012)

    Article  Google Scholar 

  24. MOSAYEBIDORCHEH, S., FARZINPOOR, M., and GANJI, D. D. Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles. Energy Conversion and Management, 86, 365–370 (2014)

    Article  Google Scholar 

  25. AZIZ, A. and NA, T. Y. Periodic heat transfer in fins with variable thermal parameters. International Journal of Heat and Mass Transfer, 24(8), 1397–1404 (1981)

    Article  MATH  Google Scholar 

  26. AZIZ, A. and LUARDINI, V. J. Analytical and numerical modeling of steady periodic heat transfer in extended surfaces. Computational Mechanics, 14(5), 387–410 (1994)

    Article  Google Scholar 

  27. YANG, Y. T. and CHIEN, S. K. A double decomposition method for solving the periodic base temperature in convective longitudinal fins. Energy Conversion and Management, 49(10), 2910–2916 (2008)

    Article  Google Scholar 

  28. SINGH, S., KUMAR, D., and RAI, K. N. Analytical solution of Fourier and non-Fourier heat transfer in longitudinal fin with internal heat generation and periodic boundary condition. International Journal of Thermal Sciences, 125, 166–175 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Science and Technology, Govt of India for their support under the DST-FIST Programme for HEIs (No. SR/FST/MS-I/2018/23(C)). The author M. L. KEERTHI is thankful to the University Grants Commission, New Delhi, India (No. CSIR-UGC NET DEC. 2019)/(Student ID: 191620111468) for the financial support in the form of UGC-Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Gireesha.

Additional information

Conflict of interest

We confirm that there are no conflicts of interest with the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gireesha, B.J., Keerthi, M.L. Effect of periodic heat transfer on the transient thermal behavior of a convective-radiative fully wet porous moving trapezoidal fin. Appl. Math. Mech.-Engl. Ed. 44, 653–668 (2023). https://doi.org/10.1007/s10483-023-2974-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-2974-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation