Skip to main content
Log in

Repercussion of Hall effect and nonlinear radiation on Couette-Poiseuille flow of Casson-Williamson fluid through upright microchannel

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The main aim of the present work is to investigate the flow and heat transport properties of non-Newtonian Casson-Williamson fluid through an upright microchannel along with entropy generation analysis, and explore the effects of convective boundary conditions, Couette-Poiseuille flow, and nonlinear radiation. The movement of liquid is scrutinized with the Hall effect and exponential heat source. The rheological characteristics of the Casson-Williamson fluid model are also considered. By considering the desirable similarity variables, the equations of motion are reduced to nonlinear ordinary differential equations. The Runge-Kutta-Fehlberg fourth-fifth order method along with the shooting method is adopted to solve these dimensionless expressions. The detailed investigation is pictorially displayed to show the influence of effective parameters on the entropy generation and the Bejan number. One of the major tasks of the exploration is to compare the Casson fluid and the Williamson fluid. The results show that the rate of heat transfer in the Casson fluid is more remarkable than that in the Williamson fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Re :

Reynolds number

N r :

radiation parameter

Be :

Bejan number

N s :

dimensionless entropy generation number

T h :

hot fluid temperature, K

T a :

ambient temperature, K

T :

nanofluid temperature, K

u :

primary velocity, m/s

Ec :

Eckert number

Gr :

Grashof number

Pr :

Prandtl number

M :

Hartmann number

q r :

radiative heat flux, W/m2

B 0 :

magnetic field, A/m

p :

pressure, Pa

c p :

specific heat, J/(kg · K)

P :

pressure gradient parameter

y :

transversal coordinate, m

g :

acceleration due to gravity, m/s2

k :

thermal conductivity, W/(m · K)

a :

distance between channels, m

F :

dimensionless axial velocity component

k* :

mean absorption coefficient, m−1

We :

Weissenberg number

w :

secondary velocity, m/s

B i :

Biot number

E g :

entropy generation, J/K

Q e :

exponential heat source parameter

G :

dimensionless transverse velocity component

v 0 :

suction/injection velocity, m/s

h 1,h 2 :

convective heat transfer coefficients, W/(m2 · K).

μ :

viscosity coefficient, kg/(m · s)

β * :

thermal expansion coefficient, K−1

ρ :

fluid density, kg/m3

σ * :

Stefan-Boltzmann constant, W/(m2 · K4)

θ :

dimensionless temperature

β :

Casson fluid parameter

λ:

upper wall motion parameter

Γ:

Williamson fluid parameter.

References

  1. KHADRAWI, A. F., OTHMAN, A., and AL-NIMR, M. A. Transient free convection fluid flow in a vertical microchannel as described by the hyperbolic heat conduction model. International Journal of Thermophysics, 26(3), 905–918 (2005)

    Article  Google Scholar 

  2. CHEN, C. K. and WENG, H. C. Developing natural convection with thermal creep in a vertical microchannel. Journal of Physics D: Applied Physics, 39, 3107–3118 (2006)

    Article  Google Scholar 

  3. MALVANDI, A. and GANJI, D. D. Mixed convective heat transfer of water/alumina nanofluid inside a vertical microchannel. Powder Technology, 263, 37–44 (2014)

    Article  Google Scholar 

  4. ADESANYA, S. O. Free convective flow of heat generating fluid through a porous vertical channel with velocity slip and temperature jump. Ain Shams Engineering Journal, 6(3), 1045–1052 (2015)

    Article  Google Scholar 

  5. KHAN, I., SAQIB, M., and ALI, F. Application of time-fractional derivatives with non-singular kernel to the generalized convective flow of Casson fluid in a microchannel with constant walls temperature. The European Physical Journal Special Topics, 226, 3791–3802 (2017)

    Article  Google Scholar 

  6. TAVAKOLI, M. R., AKBARI, O. A., MOHAMMADIAN, A., KHODABANDEH, E., and POURFATTAH, F. Numerical study of mixed convection heat transfer inside a vertical microchannel with two-phase approach. Journal of Thermal Analysis and Calorimetry, 135(2), 1119–1134 (2019)

    Article  Google Scholar 

  7. HASHIM, HAFEEZ, M., and CHU, Y. M. Numerical simulation for heat and mass transport analysis for magnetic-nanofluids flow through stretchable convergent/divergent channels. International Journal of Modern Physics B, 35(19), 2150198 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. YASMIN, H., HAYAT, T., ALOTAIBI, N., and GAO, H. Convective heat and mass transfer analysis on peristaltic flow of Williamson fluid with Hall effects and Joule heating. International Journal of Biomathematics, 7(5), 1450058 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. ABBASI, F. M., HAYAT, T., and ALSAEDI, A. Numerical analysis for MHD peristaltic transport of Carreau-Yasuda fluid in a curved channel with Hall effects. Journal of Magnetism and Magnetic Materials, 382(15), 104–110 (2015)

    Article  Google Scholar 

  10. KHAN, Z. H., MAKINDE, O. D., AHMAD, R., and KHAN, W. A. Numerical study of unsteady MHD flow and entropy generation in a rotating permeable channel with slip and Hall effects. Communications in Theoretical Physics, 70(5), 641–650 (2018)

    Article  MathSciNet  Google Scholar 

  11. VEERAKRISHNA, M., SUBBA-REDDY, G., and CHAMKHA, A. J. Hall effects on unsteady MHD oscillatory free convective flow of second grade fluid through porous medium between two vertical plates. Physics of Fluids, 30(2), 023106 (2018)

    Article  Google Scholar 

  12. OPANUGA, A. A., ADESANYA, S. O., BISHOP, S. A., OKAGBUE, H. I., and AGBOOLA, O. O. Entropy generation of unsteady MHD Couette flow through vertical microchannel with Hall and ion slip effects. International Journal of Applied Mathematics, 50(3), 666–677 (2020)

    Google Scholar 

  13. JAMALABADI, M. Y. A., HOOSHMAND, P., BAGHERI, N., KHAKRAH, H., and DOUSTI, M. Numerical simulation of Williamson combined natural and forced convective fluid flow between parallel vertical walls with slip effects and radiative heat transfer in a porous medium. Entropy, 18(4), 147 (2016)

    Article  Google Scholar 

  14. LOPEZ, A., IBANEZ, G., PANTOJA, J., MOREIRA, J., and LASTRES, O. Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. International Journal of Heat and Mass Transfer, 107, 982–994 (2017)

    Article  Google Scholar 

  15. TLILI, I., HAMADNEH, N. N., KHAN, W. A., and ATAWNEH, S. Thermodynamic analysis of MHD Couette-Poiseuille flow of water based nanofluids in a rotating channel with radiation and Hall effects. Journal of Thermal Analysis and Calorimetry, 132(3), 1899–1912 (2018)

    Article  Google Scholar 

  16. HASHIM, KHAN, M., SHARJEEL, and KHAN, U. Stability analysis in the transient flow of Carreau fluid with non-linear radiative heat transfer and nanomaterials: critical points. Journal of Molecular Liquids, 272, 787–800 (2018)

    Article  Google Scholar 

  17. SINDHU, S., GIREESHA, B. J., and SOWMYA, G. Impact of Hall effect, nonlinear radiation and heat source on MHD Couette-Poiseuille flow of nanoliquid through a rotating channel. Multidiscipline Modeling in Materials and Structures, 16(6), 1457–1473 (2020)

    Article  Google Scholar 

  18. KHAN, W. A., WAQAS, M., CHAMMAM, W., ASGHAR, Z., NISAR, U. A., and ABBAS, S. Z. Evaluating the characteristics of magnetic dipole for shear-thinning Williamson nanofluid with thermal radiation. Computer Methods and Programs in Biomedicine, 191, 105396 (2020)

    Article  Google Scholar 

  19. FELICITA, A., VENKATESH, P., GIREESHA, B. J., SOUMYA, D. O., and ESHWARAPPA, K. M. Third grade fluid flow in a microchannel crammed with permeable media liable to non-linear thermal radiation. International Journal of Ambient Energy (2021) https://doi.org/10.1080/01430750.2021.1965020

  20. SAIF, R. S., HASHIM, ZAMAN, M., and AYAZ, M. Thermally stratified flow of hybrid nanofluids with radiative heat transport and slip mechanism: multiple solutions. Communications in Theoretical Physics, 74(1), 015801 (2022)

    Article  MathSciNet  Google Scholar 

  21. SHEELA-FRANCISCA, J., TSO, C. P., and RILLING, D. Heat transfer with viscous dissipation in Couette-Poiseuille flow under asymmetric wall heat fluxes. Open Journal of Fluid Dynamics, 2(4), 111–119 (2012)

    Article  Google Scholar 

  22. MAKINDE, O. D., ISKANDER, T., MABOOD, F., KHAN, W. A., and TSHEHLA, M. S. MHD Couette-Poiseuille flow of variable viscosity nanofluids in a rotating permeable channel with Hall effects. Journal of Molecular Liquids, 221, 778–787 (2016)

    Article  Google Scholar 

  23. ZEESHAN, A., SHEHZAD, N., and ELLAHI, R. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results in Physics, 8, 502–512 (2018)

    Article  Google Scholar 

  24. ELLAHI, R., SAIT, S. M., SHEHZAD, N., and MOBIN, N. Numerical simulation and mathematical modeling of electro-osmotic Couette-Poiseuille flow of MHD power-law nanofluid with entropy generation. Symmetry, 11 (8), 1038 (2019)

    Article  Google Scholar 

  25. ABBASI, H. Entropy generation analysis in a uniformly heated microchannel heat sink. Energy, 32(10) 1932–1947 (2007)

    Article  Google Scholar 

  26. SOHEL, M. R., SAIDUR, R., HASSAN, N. H., ELIAS, M. M., KHALEDUZZAMAN, S. S., and MAHBUBUL, I. M. Analysis of entropy generation using nanofluid flow through the circular microchannel and minichannel heat sink. International Communications in Heat and Mass Transfer, 46, 85–91 (2013)

    Article  Google Scholar 

  27. AWAD, M. M. A review of entropy generation in microchannels. Advances in Mechanical Engineering, 7(12), 1687814015590297 (2015)

    Article  Google Scholar 

  28. LIU, Y., JIAN, Y., and TAN, W. Entropy generation of electromagnetohydrodynamic (EMHD) flow in a curved rectangular microchannel. International Journal of Heat and Mass Transfer, 127, 901–913 (2018)

    Article  Google Scholar 

  29. SEYYEDI, S. M., DOGONCHI, A. S., HASHEMI-TILEHNOEE, M., ASGHAR, Z., WAQAS, M., and GANJI, D. D. A computational framework for natural convective hydromagnetic flow via inclined cavity: an analysis subjected to entropy generation. Journal of Molecular Liquids, 287, 110863 (2019)

    Article  Google Scholar 

  30. GIREESHA, B. J. and SINDHU, S. Entropy generation analysis of Casson fluid flow through a vertical microchannel under combined effect of viscous dissipation, Joule heating, Hall effect and thermal radiation. Multidiscipline Modeling in Materials and Structures, 16(4), 713–730 (2020)

    Article  Google Scholar 

  31. SEYYEDI, S. M., DOGONCHI, A. S., HASHEMI-TILEHNOEE, M., WAQAS, M., and GANJI, D. D. Entropy generation and economic analyses in a nanofluid filled L-shaped enclosure subjected to an oriented magnetic field. Applied Thermal Engineering, 168, 14789 (2021)

    Google Scholar 

  32. GIREESHA, B. J. and ANITHA, L. Irreversibility analysis of micropolar nanofluid flow using Darcy-Forchheimer rule in an inclined microchannel with multiple slip effects. Heat Transfer, 51(6), 5834–5856 (2022)

    Article  Google Scholar 

  33. BHUVANESWARI, M., SIVASANKARAN, S., NIRANJAN, H., and ESWARAMOORTHI, S. Cross Diffusion Effects on MHD Convection of Casson-Williamson Fluid over a Stretching Surface with Radiation and Chemical Reaction, Birkhäuser, Cham, 139–146 (2019)

    MATH  Google Scholar 

  34. RAJU, C. S. K., SANDEEP, N., ALI, M. E., and NUHAIT, A. O. Heat and mass transfer in 3-D MHD Williamson-Casson fluids flow over a stretching surface with non-uniform heat source/sink. Thermal Science, 23(1), 281–293 (2019)

    Article  Google Scholar 

  35. HAMID, A., HASHIM, and KHAN, M. Heat generation/absorption and velocity slip effects on unsteady axisymmetric flow of Williamson magneto-nanofluid. Modern Physics Letters B, 33(34), 1950432 (2019)

    Article  MathSciNet  Google Scholar 

  36. HASHIM, HAMID, A., and KHAN, M. Transient flow and heat transfer mechanism for Williamson-nanomaterials caused by a stretching cylinder with variable thermal conductivity. Microsystem Technologies: Micro- and Nanosystems Information Storage and Processing Systems, 25, 3287–3297 (2019)

    Article  Google Scholar 

  37. WAQAS, M., AHMAD, A., ASGHAR, Z., IRFAN, M., KHAN, W. A., and ZUBAIR, M. Visualization of non-linear convective Williamson liquid based on generalized heat-mass theories. Physica Scripta, 96(1), 015218 (2020)

    Article  Google Scholar 

  38. OGUNSEYE, H. A., SALAWU, S. O., and FATUNMBI, E. O. A numerical study of MHD heat and mass transfer of a reactive Casson-Williamson nanofluid past a vertical moving cylinder. Partial Differential Equations in Applied Mathematics, 4, 100148 (2021)

    Article  Google Scholar 

  39. HUMANE, P. P., PATIL, V. S., and PATIL, A. B. Chemical reaction and thermal radiation effects on magnetohydrodynamics flow of Casson-Williamson nanofluid over a porous stretching surface. Journal of Process Mechanical Engineering, 235(6), 2008–2018 (2021)

    Article  Google Scholar 

  40. WAQAS, M. A study on magneto-hydrodynamic non-Newtonian thermally radiative fluid considering mixed convection impact towards convective stratified surface. International Communications in Heat and Mass Transfer, 126, 105262 (2021)

    Article  Google Scholar 

  41. AKOLADE, M. T. and TIJANI, Y. O. A comparative study of three-dimensional flow of Casson-Williamson nanofluids past a Riga plate: spectral quasi-linearization approach. Partial Differential Equations in Applied Mathematics, 4, 100108 (2021)

    Article  Google Scholar 

  42. YOUSEF, N. S., MEGAHED, A. M., GHONEIM, N. I., ELSAFI, M., and FARES, E. Chemical reaction impact on MHD dissipative Casson-Williamson nanofluid flow over a slippery stretching sheet through porous medium. Alexandria Engineering Journal, 61, 10161–10170 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Gireesha.

Additional information

Citation: GIREESHA, B. J. and ANITHA, L. Repercussion of Hall effect and nonlinear radiation on Couette-Poiseuille flow of Casson-Williamson fluid through upright microchannel. Applied Mathematics and Mechanics (English Edition), 43(12), 1951–1964 (2022) https://doi.org/10.1007/s10483-022-2929-8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gireesha, B.J., Anitha, L. Repercussion of Hall effect and nonlinear radiation on Couette-Poiseuille flow of Casson-Williamson fluid through upright microchannel. Appl. Math. Mech.-Engl. Ed. 43, 1951–1964 (2022). https://doi.org/10.1007/s10483-022-2929-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2929-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation