Skip to main content
Log in

Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite (FG-CNTRC) shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated. Assuming arches with thickness-graded material properties, four different distribution patterns of carbon nanotubes (CNTs) are considered. The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field, and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work. The critical geometric parameters are introduced to determine the criteria for buckling mode switching. Parametric studies are carried out to demonstrate the effects of temperature variations, material parameters, geometric parameters, and elastic constraints on the stability of the arch. It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch. In addition, the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

q :

uniform radial load

Θ:

half of the included angle of the arch

S :

length of the arch

b :

width of the arch

h :

thickness of the arch

R :

radius of the arch

k :

stiffness of equal elastic rotational restraints

ΔT :

uniform temperature rise

θ :

the angular coordinate

z :

coordinate

w, ̄w :

axial and dimensionless axial displacements

v, ̄v :

radial and dimensionless radial displacements

̄v*,̄w*:

radial and axial buckling displacements

̄v b, ̄w b :

radial and axial infinitesimal displacements

̄v tb, ̄w tb :

upper bifurcation buckling radial and axial displacements

Δ̄v, Δ̄w :

additional radial and axial displacements

Δ̄v sym, Δ̄v a :

symmetric and asymmetric components of radial displacements

V cnt :

total volume fraction of carbon nanotubes (CNTs)

w cnt :

mass fraction of CNTs

ρ cnt, ρ m :

densities of CNTs and the isotropic matrix

E cnt11 , E cnt22 :

Young’s moduli of CNTs

E m :

Young’s modulus of matrix

G cnt12 , G m :

shear moduli of CNTs and matrix

η 1, η 2, η 3 :

CNT efficiency parameters

ν :

Poisson’s ratio

α cnt11 , α m :

thermal expansion coefficients of CNTs and matrix

ε θ :

normal strain

ε M :

membrane strain

ε rr :

radial strain

ε T :

thermal strain

σ θθ :

circumferential normal strain

N :

axial compression force

N T :

thermal axial compression force

N * :

axial buckling force

N b :

axial infinitesimal force

N bb :

axial force during bifurcation buckling

N s :

axial force during the lowest buckling

M :

bending moment

M T :

thermal bending moment

M * :

bending moment for buckling

M b :

infinitesimal bending moment

A 11, B 11, D 11 :

stiffness components

κ :

effective bending stiffness

μ :

axial compressive force parameter

μ b :

axial force parameter during bifurcation buckling

μ s :

axial force parameter during the lowest buckling

\(\overline P\) :

dimensionless load

\(\overline P _{\rm{b}}^{\rm{u}}\) :

upper bifurcation buckling load

B :

stiffness parameter

B0 = B/h :

dimensionless stiffness parameter

ζ :

dimensionless temperature parameter

α :

flexibility of the rotational restraint

λ :

geometric parameter of the arch

λ sn :

critical geometric parameter for buckling

λ sb1 :

critical geometric parameter for the limit point and the bifurcation buckling mode switching

λ sb2 :

critical geometric parameter for bifurcation buckling

K :

amplitude parameter

β = μΘ:

parameter for calculation

β b, β s :

parameters for calculation

ρ :

temperature parameter for calculation

ρ 0 = ρ/h :

parameter for calculation

r 11 :

parameter for calculation

K 1, K 2 :

coefficients

A i, B i, C i :

coefficients, i=1, 2, 3, 4, 5

D i :

coefficients, i=1, 2, 3

References

  1. JAWAID, M. and KHALIL, H. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydrate Polymers, 86(1), 1–18 (2011)

    Article  Google Scholar 

  2. SUN, J. B., XU, X. S., and LIM, C. W. Accurate symplectic space solutions for thermal buckling of functionally graded cylindrical shells. Composites Part B: Engineering, 55, 208–214 (2013)

    Article  Google Scholar 

  3. MAIER, A., SCHMIDT, R., OSWALD-TRANTA, B., and SCHLEDJEWSKI, R. Non-destructive thermography analysis of impact damage on large-scale CFRP automotive parts. Materials, 7(1), 413–429 (2014)

    Article  Google Scholar 

  4. BACHMANN, J., HIDALGO, C., and BRICOUT, S. Environmental analysis of innovative sustainable composites with potential use in aviation sector: a life cycle assessment review. Science China: Technological Sciences, 60(9), 1301–1317 (2017)

    Article  Google Scholar 

  5. KARATAS, M. A. and GOKKAYA, H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318–326 (2018)

    Article  Google Scholar 

  6. SALVETAT-DELMOTTE, J. P. and RUBIO, A. Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon, 40(10), 1729–1734 (2002)

    Article  Google Scholar 

  7. LIM, C. W. and YANG, Y. Wave propagation in carbon nanotubes: nonlocal elasticity-induced stiffness and velocity enhancement effects. Journal of Mechanics of Materials and Structures, 5(3), 459–476 (2010)

    Article  Google Scholar 

  8. YAN, J. W., LIEW, K. M., and HE, L. H. Analysis of single-walled carbon nanotubes using the moving Kriging interpolation. Computer Methods in Applied Mechanics and Engineering, 229, 56–67 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. GHASEMI, H., RAFIEE, R., ZHUANG, X., MUTHU, J., and RABCZUK, T. Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling. Computational Materials Science, 85, 295–305 (2014)

    Article  Google Scholar 

  10. JIA, P. and LIM, C. W. Thermal-acoustic wave generation and propagation using suspended carbon nanotube thin film in fluidic environments. Journal of Applied Mechanics: Transactions of the ASME, 83(9), 091007 (2016)

    Article  Google Scholar 

  11. ZHOU, Y., PERVIN, F., LEWIS, L., and JEELANI, S. Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 452, 657–664 (2007)

    Article  Google Scholar 

  12. PARK, J. G., KEUM, D. H., and LEE, Y. H. Strengthening mechanisms in carbon nanotube-reinforced aluminum composites. Carbon, 95, 690–698 (2015)

    Article  Google Scholar 

  13. THOSTENSON, E. T., REN, Z. F., and CHOU, T. W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 61(13), 1899–1912 (2001)

    Article  Google Scholar 

  14. COLEMAN, J. N., KHAN, U., BLAU, W. J., and GUN’KO, Y. K. Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon, 44(9), 1624–1652 (2006)

    Article  Google Scholar 

  15. SHARIATI, A., GHABUSSI, A., HABIBI, M., SAFARPOUR, H., SAFARPOUR, M., TOUNSI, A., and SAFA, M. Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Structures, 154, 106840 (2020)

    Article  Google Scholar 

  16. MAHARJAN, A., YU, P., and LEE, S. Y. Nonlinear dynamic and crack behaviors of carbon nanotubes-reinforced composites with various geometries. Nanotechnology Reviews, 11(1), 1307–1321 (2022)

    Article  Google Scholar 

  17. BAKSHI, S. R., LAHIRI, D., and AGARWAL, A. Carbon nanotube reinforced metal matrix composites: a review. International Materials Reviews, 55(1), 41–64 (2010)

    Article  Google Scholar 

  18. TAO, F. and SALMERON, M. Insitu studies of chemistry and structure of materials in reactive environments. Science, 331(6014), 171–174 (2011)

    Article  Google Scholar 

  19. BIRMAN, V. and BYRD, L. W. Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews, 60(1–6), 195–216 (2007)

  20. SHEN, H. S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures, 91(1), 9–19 (2009)

    Article  Google Scholar 

  21. SCIUVA, M. D. and SORRENTI, M. Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended refined zigzag theory. Composite Structures, 227, 111324 (2019)

    Article  Google Scholar 

  22. ZGHAL, S., FRIKHA, A., and DAMMAK, F. Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes. Applied Mathematics and Mechanics (English Edition), 41(8), 1227–1250 (2020) https://doi.org/10.1007/s10483-020-2633-9

    Article  MathSciNet  MATH  Google Scholar 

  23. CIVALEK, O. and JALAEI, M. H. Shear buckling analysis of functionally graded (FG) carbon nanotube reinforced skew plates with different boundary conditions. Aerospace Science and Technology, 99, 105753 (2020)

    Article  Google Scholar 

  24. MALLEK, H., JRAD, H., WALI, M., and DAMMAK, F. Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory. Engineering with Computers, 37(2), 1389–1407 (2021)

    Article  Google Scholar 

  25. GARG, A., CHALAK, H. D., ZENKOUR, A. M., BELARBI, M. O., and SAHOO, R. Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore. Thin-Walled Structures, 170, 108626 (2022)

    Article  Google Scholar 

  26. XU, C., LI, Y., LU, M., and DAI, Z. Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity. Applied Mathematics and Mechanics (English Edition), 43(3), 355–370 (2022) https://doi.org/10.1007/s10483-022-2828-5

    Article  MathSciNet  MATH  Google Scholar 

  27. CALHOUN, P. R. and DADEPPO, D. A. Nonlinear finite element analysis of clamped arches. Journal of Structural Engineering, 109(3), 599–612 (1983)

    Article  Google Scholar 

  28. HODGES, D. H. Non-linear inplane deformation and buckling of rings and high arches. International Journal of Non-Linear Mechanics, 34(4), 723–737 (1999)

    Article  MATH  Google Scholar 

  29. PI, Y. L., BRADFORD, M. A., and UY, B. In-plane stability of arches. International Journal of Solids and Structures, 39(1), 105–125 (2002)

    Article  MATH  Google Scholar 

  30. BATENI, M. and ESLAMI, M. R. Non-linear in-plane stability analysis of FGM circular shallow arches under central concentrated force. International Journal of Non-Linear Mechanics, 60, 58–69 (2014)

    Article  Google Scholar 

  31. YANG, Z. C., LIU, A. R., PI, Y. L., FU, J. Y., and GAO, Z. K. Nonlinear dynamic buckling of fixed shallow arches under impact loading: an analytical and experimental study. Journal of Sound and Vibration, 487, 115622 (2020)

    Article  Google Scholar 

  32. YANG, Z. C., LIU, A. R., LAI, S. K., SAFAEI, B., LYU, J. E., HUANG, Y. H., and FU, J. Y. Thermally induced instability on asymmetric buckling analysis of pinned-fixed FG-GPLRC arches. Engineering Structures, 250, 113243 (2022)

    Article  Google Scholar 

  33. YANG, Z. C., WU, D., YANG, J., LAI, S. K., LYU, J. E., LIU, A. R., and FU, J. Y. Dynamic buckling of rotationally restrained FG porous arches reinforced with graphene nanoplatelets under a uniform step load. Thin-Walled Structures, 166, 108103 (2021)

    Article  Google Scholar 

  34. SHI, Z. Y., YAO, X. L., PANG, F. Z., and WANG, Q. S. A semi-analytical solution for in-plane free vibration analysis of functionally graded carbon nanotube reinforced composite circular arches with elastic restraints. Composite Structures, 182, 420–434 (2017)

    Article  Google Scholar 

  35. ZHANG, Y. Y., ZHANG, B., SHEN, H. M., WANG, Y. X., ZHANG, X., and LIU, J. Nonlinear bending analysis of functionally graded CNT-reinforced shallow arches placed on elastic foundations. Acta Mechanica Solida Sinica, 33(2), 164–186 (2020)

    Article  Google Scholar 

  36. BABAEI, H. Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation. Applied Mathematics and Computation, 413, 126606 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. WU, H., KITIPORNCHAI, S., and YANG, J. Thermo-electro-mechanical postbuckling of piezoelectric FG-CNTRC beams with geometric imperfections. Smart Materials and Structures, 25(9), 095022 (2016)

    Article  Google Scholar 

  38. TORABI, J., ANSARI, R., and HASSANI, R. Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory. European Journal of Mechanics A: Solids, 73, 144–160 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. KHOSRAVI, S., ARVIN, H., and KIANI, Y. Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment. International Journal of Mechanical Sciences, 164, 105187 (2019)

    Article  Google Scholar 

  40. PI, Y. L. and BRADFORD, M. A. Non-linear in-plane postbuckling of arches with rotational end restraints under uniform radial loading. International Journal of Non-Linear Mechanics, 44(9), 975–989 (2009)

    Article  MATH  Google Scholar 

  41. PI, Y. L. and TRAHAIR, N. S. In-plane inelastic buckling and strengths of steel arches. Journal of Structural Engineering, 122(7), 734–747 (1996)

    Article  Google Scholar 

  42. SHENAS, A. G., MALEKZADEH, P., and ZIAEE, S. Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment. Composite Structures, 162, 325–340 (2017)

    Article  Google Scholar 

  43. TANG, Y., TANG, F., ZHENG, J., and LI, Z. In-plane asymmetric buckling of an FGM circular arch subjected to thermal and pressure fields. Engineering Structures, 239, 112268 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Li.

Additional information

Citation: LI, C., ZHU, C. X., LIM, C. W., and LI, S. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. Applied Mathematics and Mechanics (English Edition), 43(12), 1821–1840 (2022) https://doi.org/10.1007/s10483-022-2917-7

Project supported by the National Natural Science Foundation of China (Nos. 11972240 and 51875374)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhu, C., Lim, C.W. et al. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. Appl. Math. Mech.-Engl. Ed. 43, 1821–1840 (2022). https://doi.org/10.1007/s10483-022-2917-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2917-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation