Skip to main content
Log in

Electromagnetohydrodynamic (EMHD) flow of fractional viscoelastic fluids in a microchannel

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This study investigates the electromagnetohydrodynamic (EMHD) flow of fractional viscoelastic fluids through a microchannel under the Navier slip boundary condition. The flow is driven by the pressure gradient and electromagnetic force where the electric field is applied horizontally, and the magnetic field is vertically (upward or downward). When the electric field direction is consistent with the pressure gradient direction, the changes of the steady flow rate and velocity with the Hartmann number Ha are irrelevant to the direction of the magnetic field (upward or downward). The steady flow rate decreases monotonically to zero with the increase in Ha. In contrast, when the direction of the electric field differs from the pressure gradient direction, the flow behavior depends on the direction of the magnetic field, i.e., symmetry breaking occurs. Specifically, when the magnetic field is vertically upward, the steady flow rate increases first and then decreases with Ha. When the magnetic field is reversed, the steady flow rate first reduces to zero as Ha increases from zero. As Ha continues to increase, the steady flow rate (velocity) increases in the opposite direction and then decreases, and finally drops to zero for larger Ha. The increase in the fractional calculus parameter α or Deborah number De makes it take longer for the flow rate (velocity) to reach the steady state. In addition, the increase in the strength of the magnetic field or electric field, or in the pressure gradient tends to accelerate the slip velocity at the walls. On the other hand, the increase in the thickness of the electric double-layer tends to reduce it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABHARI, F., JAAFAR, H., and YUNUS, N. A. M. A comprehensive study of micropumps technologies. International Journal of Electrochemical Science, 7(10), 9765–9780 (2012)

    Google Scholar 

  2. ANDRADE, D. and JOSEPH, D. Elimination of electroosmotic flow in analytical particle electrophoresis. ACS Applied Materials and Interfaces, 31, 225–240 (1976)

    Google Scholar 

  3. JOSEPH, M. A., CAMPANERO, M. A., POPINEAU, Y., and IRACHE, J. M. Electrophoretic separation and characterisation of gliadin fractions from isolates and nanoparticulate drug delivery systems. Chromatographia, 50(3–4), 243–246 (1999)

    Google Scholar 

  4. HEO, H. S., KANG, S., and YONG, K. S. An experimental study on the AC electroosmotic flow around a pair of electrodes in a microchannel. Journal of Mechanical Science and Technology, 21(12), 2237–2243 (2007)

    Article  Google Scholar 

  5. WANG, B., NITA, S., HORTON, J. H., and OLESCHUK, R. D. Surface Modification of PDMS for Control of Electroosmotic Flow: Characterization Using Atomic and Chemical Force Microscopy, Springer, Netherlands (2002)

    Google Scholar 

  6. CHANG, H. T., CHEN, H. S., HSIEH, M. M., and TSENG, W. L. Electrophoretic separation of DNA in the presence of electroosmotic flow. Reviews in Analytical Chemistry, 19(1), 45–74 (2000)

    Article  Google Scholar 

  7. LI, D. Electrokinetics in Microfluidics, Elsevier, Amsterdam (2004)

    Google Scholar 

  8. HUNTER, R. J. Zeta Potential in Colloid Science, Academic Press, New York (1981)

    Google Scholar 

  9. TANG, G. H., LI, X. F., HE, Y. L., and TAO, W. Q. Electroosmotic flow of non-Newtonian fluid in microchannels. Journal of Non-Newtonian Fluid Mechanics, 157(1–2), 133–137 (2009)

    Article  MATH  Google Scholar 

  10. TSAO, H. K. Electroosmotic flow through an annulus. Journal of Colloid and Interface Science, 225(1), 247–250 (2000)

    Article  Google Scholar 

  11. SHEHZAD, S. A., HAYAT, T., and ALSAEDI, A. Three-dimensional MHD flow of Casson fluid in porous medium with heat generation. Journal of Fluid Mechanics, 9(1), 215–223 (2016)

    Article  Google Scholar 

  12. FAROOQ, M., GULL, N., ALSAEDI, A., and HAYAT, T. MHD flow of a Jeffrey fluid with Newtonian heating. Journal of Mechanics, 31(3), 319–329 (2015)

    Article  Google Scholar 

  13. GIJS, M., LACHARME, F., and LEHMANN, U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chemical Reviews, 110(3), 1518–1563 (2010)

    Article  Google Scholar 

  14. BAU, H. H., ZHU, J., QIAN, S., and XIANG, Y. A magneto-hydrodynamically controlled fluidic network. Sensors and Actuators B: Chemical, 88(2), 205–216 (2003)

    Article  Google Scholar 

  15. JIAN, Y. Transient MHD heat transfer and entropy generation in a microparallel channel combined with pressure and electroosmotic effects. International Journal of Heat and Mass Transfer, 89, 193–205 (2015)

    Article  Google Scholar 

  16. JIAN, Y. and CHANG, L. Electromagnetohydrodynamic (EMHD) micropumps under a spatially non-uniform magnetic field. AIP Advances, 5(5), 057121 (2015)

    Article  Google Scholar 

  17. THURSTON, G. B. Viscoelasticity of human blood. Biophysical Journal, 12(9), 1205–1217 (1972)

    Article  Google Scholar 

  18. DING, Z. and JIAN, Y. Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels: a linear analysis. Journal of Fluid Mechanics, 919, 12517 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. TIAN, J., XIONG, R., SHEN, W., and WANG, J. A comparative study of fractional order models on state of charge estimation for lithium ion batteries. Chinese Journal of Mechanical Engineering, 33(51), 1–15 (2020)

    Google Scholar 

  20. ABDULHAMEED, M., TAHIRU, A. G., and DAUDA, G. Y. Modeling electro-osmotic flow and thermal transport of Caputo fractional Burgers fluid through a micro-channel. Journal of Process Mechanical Engineering, 235(6), 2254–2270 (2021)

    Article  Google Scholar 

  21. OUZIZI, A., ABDOUN, F., and AZRAR, L. Nonlinear dynamics of beams on nonlinear fractional viscoelastic foundation subjected to moving load with variable speed. Journal of Sound and Vibration, 523, 116730 (2022)

    Article  Google Scholar 

  22. SONG, D. and JIANG, T. Study on the constitutive equation with fractional derivative for the viscoelastic fluids-modified Jeffreys model and its application. Rheologica Acta, 37(5), 512–517 (1998)

    Article  Google Scholar 

  23. GUO, X. and FU, Z. An initial and boundary value problem of fractional Jeffreys’ fluid in a porous half space. Computers and Mathematics with Applications, 78(6), 1801–1810 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. GUO, X. and QI, H. Analytical solution of electroosmotic peristalsis of fractional Jeffreys fluid in a microchannel. Micromachines, 8(12), 341–255 (2017)

    Article  Google Scholar 

  25. XU, M. and TAN, W. Intermediate processes and critical phenomena: theory, method and progress of fractional operators and their applications to modern mechanics. Science in China Series G: Physics Mechanics and Astronomy, 49(3), 257–272 (2006)

    Article  MATH  Google Scholar 

  26. QI, H. and JIN, H. Unsteady helical flows of a generalized Oldroyd-B fluid with fractional derivative. Real World Applications, 10(5), 2700–2708 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. ABDULHAMEED, M., VIERU, D., and ROSLAN, R. Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes. Computers and Mathematics with Applications, 74(10), 2503–2519 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. HAQ, S. U., KHAN, M. A., and SHAH, N. A. Analysis of magnetohydrodynamic flow of a fractional viscous fluid through a porous medium. Chinese Journal of Physics, 56(1), 261–269 (2018)

    Article  Google Scholar 

  29. BROCHARD, F. and DE GENNES, P. G. Shear-dependent slippage at a polymer/solid interface. Langmuir, 8(12), 3033–3037 (1992)

    Article  Google Scholar 

  30. DENN, M. M. Extrusion instabilities and wall slip. Annual Review of Fluid Mechanics, 33(1), 265–287 (2001)

    Article  MATH  Google Scholar 

  31. HERR, A. E., MOLHO, J. I., SANTIAGO, J. G., MUNGAL, M. G., KENNY, T. W., and GARGUILO, M. G. Electroosmotic capillary flow with nonuniform zeta potential. Analytical Chemistry, 72(5), 1053–1057 (2000)

    Article  Google Scholar 

  32. ZHANG, Y. L., CRASTER, R. V., and MATAR, O. K. Surfactant driven flows overlying a hydrophobic epithelium: film rupture in the presence of slip. Journal of Colloid and Interface Science, 264(1), 160–175 (2003)

    Article  Google Scholar 

  33. JIANG, Y., QI, H., XU, H., and JIANG, X. Transient electroosmotic slip flow of fractional Oldroyd-B fluids. Microfluidics and Nanofluidics, 21(1), 1–10 (2017)

    Article  Google Scholar 

  34. RAMESH, K., REDDY, M. G., and SOUAYEH, B. Electromagnetohydrodynamic flow of couple stress nanofluids in micro-peristaltic channel with slip and convective conditions. Applied Mathematics and Mechanics (English Edition), 42(4), 593–606 (2021) https://doi.org/10.1007/s10483-021-2727-8

    Article  MathSciNet  MATH  Google Scholar 

  35. ANWAR, T., KUMAM, P., KHAN, I., and THOUNTHONG, P. Thermal analysis of MHD convective slip transport of fractional Oldroyd-B fluid over a plate. Mechanics of Time-Dependent Materials, 1–32 (2021)

  36. TRIPATHI, D., BHUSHAN, S., and BEG, O. A. Analyical study of elecrto-osmosis modulated capillary peristaltic hemodynamics. Journal of Mechanics in Medicine and Biology, 17(3), 1750052 (2017)

    Article  Google Scholar 

  37. SIDDIQUE, I. Exact solutions for the longitudinal flow of a generalized Maxwell fluid in a circular cylinder. Archives of Mechanics, 62(4), 305–317 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Feng, C., SI, X., CAO, L., and ZHU, B. The slip flow generalized Maxwell fluids with time-distributed characteristics in a rotating microchannel. Applied Mathematics Letters, 120, 107260 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. WENCHANG, T., WENXIAO, P., and MINGYU, X. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. International Journal of Non-Linear Mechanics, 38(5), 645–650 (2003)

    Article  MATH  Google Scholar 

  40. LI, D. Single-phase gaseous flows in microchannels. Springer Science and Business Media, 30, 3027–3037 (2015)

    Google Scholar 

  41. DEL RIO, J. A., DE HARO, M. L., and WHITAKER, S. Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Physical Review E, 58(5), 6323–6327 (1998)

    Article  Google Scholar 

  42. MOGHADAM, A. J. Effect of periodic excitation on alternating current electroosmotic flow in a microannular channel. European Journal of Mechanics-B/Fluids, 48, 1–12 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. SCHIFF, J. L. The Laplace Transform: Theory and Applications, Springer Science and Business Media, New York (1999)

    Book  MATH  Google Scholar 

  44. MASLIYAH, J. H. and BHATTACHARJEE, S. Electrokinetic and Colloid Transport Phenomena, Wiley-Interscience, New York (2006)

    Book  Google Scholar 

  45. STYNES, M. and GRACIA, J. L. A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA Journal of Numerical Analysis, 35(2), 698–721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. WANG, X., QI, H., YU, B., XIONG, Z., and XU, H. Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids. Communications in Nonlinear Science and Numerical Simulation, 50, 77–87 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaodong Ding.

Additional information

Citation: AN, S. J., TIAN, K., DING, Z. D., and JIAN, Y. J. Electromagnetohydrodynamic (EMHD) flow of fractional viscoelastic fluids in a microchannel. Applied Mathematics and Mechanics (English Edition), 43(6), 917–930 (2022) https://doi.org/10.1007/s10483-022-2882-7

Project supported by the National Natural Science Foundation of China (No. 11902165) and the Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2019BS01004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, S., Tian, K., Ding, Z. et al. Electromagnetohydrodynamic (EMHD) flow of fractional viscoelastic fluids in a microchannel. Appl. Math. Mech.-Engl. Ed. 43, 917–930 (2022). https://doi.org/10.1007/s10483-022-2882-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2882-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation