Skip to main content
Log in

Elliptical inclusion in an anisotropic plane: non-uniform interface effects

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

We study the plane deformation of an elastic composite system made up of an anisotropic elliptical inclusion and an anisotropic foreign matrix surrounding the inclusion. In order to capture the influence of interface energy on the local elastic field as the size of the inclusion approaches the nanoscale, we refer to the Gurtin-Murdoch model of interface elasticity to describe the inclusion-matrix interface as an imaginary and extremely stiff but zero-thickness layer of a finite stretching modulus. As opposed to isotropic cases in which the effects of interface elasticity are usually assumed to be uniform (described by a constant interface stretching modulus for the entire interface), the anisotropic case considered here necessitates non-uniform effects of interface elasticity (described by a non-constant interface stretching modulus), because the bulk surrounding the interface is anisotropic. To this end, we treat the interface stretching modulus of the anisotropic composite system as a variable on the interface curve depending on the specific tangential direction of the interface. We then devise a unified analytic procedure to determine the full stress field in the inclusion and matrix, which is applicable to the arbitrary orientation and aspect ratio of the inclusion, an arbitrarily variable interface modulus, and an arbitrary uniform external loading applied remotely. The non-uniform interface effects on the external loading-induced stress distribution near the interface are explored via a group of numerical examples. It is demonstrated that whether the non-uniformity of the interface effects has a significant effect on the stress field around the inclusion mainly depends on the direction of the external loading and the aspect ratio of the inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HARDIMAN, N. J. Elliptic elastic inclusion in an infinite elastic plate. Quarterly Journal of Mechanics and Applied Mathematics, 7(2), 226–230 (1954)

    Article  MathSciNet  Google Scholar 

  2. SENDECKYJ, G. P. Elastic inclusion problems in plane elastostatics. International Journal of Solids and Structures, 6, 1535–1543 (1970)

    Article  Google Scholar 

  3. GONG, S. X. and MEGUID, S. A. On the elastic fields of an elliptical inhomogeneity under plane deformation. Proceedings of the Royal Society A, 443(1919), 457–471 (1993)

    MATH  Google Scholar 

  4. GONG, S. X. and MEGUID, S. A. A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear. Journal of Applied Mechanics-Transactions of the ASME, 59, S131–S135 (1992)

    Article  Google Scholar 

  5. ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society A, 241(1226), 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  6. ESHELBY, J. D. The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society A, 252(1271), 561–569 (1959)

    MathSciNet  MATH  Google Scholar 

  7. GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  8. GURTIN, M. E. and MURDOCH, A. I. Addenda to our paper A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 59(4), 389–390 (1975)

    Article  MathSciNet  Google Scholar 

  9. GURTIN, M. E., WEISSMÜLLER, J., and LARCHE, F. A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78(5), 1093–1109 (1998)

    Article  Google Scholar 

  10. STEIGMANN, D. J. and OGDEN, R. W. Plane deformations of elastic solids with intrinsic boundary elasticity. Proceedings of the Royal Society A, 453(1959), 853–877 (1997)

    Article  MathSciNet  Google Scholar 

  11. STEIGMANN, D. J. and OGDEN, R. W. Elastic surface-substrate interactions. Proceedings of the Royal Society A, 455(1982), 437–474 (1999)

    Article  MathSciNet  Google Scholar 

  12. SHARMA, P., GANTI, S., and BHATE, N. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters, 82(4), 535–537 (2003)

    Article  Google Scholar 

  13. SHARMA, P. and GANTI, S. Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. Journal of Applied Mechanics-Transactions of the ASME, 71(5), 663–671 (2004)

    Article  Google Scholar 

  14. LIM, C. W., LI, Z. R., and HE, L. H. Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress. International Journal of Solids and Structures, 43(17), 5055–5065 (2006)

    Article  Google Scholar 

  15. ZEMLYANOVA, A. Y. and MOGILEVSKAYA, S. G. On spherical inhomogeneity with Steigmann-Ogden interface. Journal of Applied Mechanics-Transactions of the ASME, 85(12), 121009 (2018)

    Article  Google Scholar 

  16. BAN, Y. and MI, C. Analytical solutions of a spherical nanoinhomogeneity under far-field unidirectional loading based on Steigmann-Ogden surface model. Mathematics and Mechanics of Solids, 25(10), 1904–1923 (2020)

    Article  MathSciNet  Google Scholar 

  17. WANG, J., YAN, P., DONG, L., and ATLURI, S. N. Spherical nano-inhomogeneity with Steigmann-Ogden interface model under general uniform far-field stress. International Journal of Solids and Structures, 185, 311–323 (2020)

    Article  Google Scholar 

  18. FANG, Q. H. and LIU, Y. W. Size-dependent elastic interaction of a screw dislocation with a circular nano-inhomogeneity incorporating interface stress. Scripta Materialia, 55(1), 99–102 (2006)

    Article  Google Scholar 

  19. TIAN, L. and RAJAPAKSE, R. Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. Journal of Applied Mechanics-Transactions of the ASME, 74(3), 568–574 (2007)

    Article  Google Scholar 

  20. MOGILEVSKAYA, S. G., CROUCH, S. L., and STOLARSKI, H. K. Multiple interacting circular nano-inhomogeneities with surface/interface effects. Journal of the Mechanics and Physics of Solids, 56(6), 2298–2327 (2008)

    Article  MathSciNet  Google Scholar 

  21. DAI, M., GHARAHI, A., and SCHIAVONE, P. Analytic solution for a circular nano-inhomogeneity with interface stretching and bending resistance in plane strain deformations. Applied Mathematical Modelling, 55, 160–170 (2018)

    Article  MathSciNet  Google Scholar 

  22. ZHANG, L. Mechanical effects of circular liquid inclusions inside soft matrix: role of internal pressure change and surface tension. Applied Mathematics and Mechanics (English Edition), 42(4), 501–510 (2021) https://doi.org/10.1007/s10483-021-2722-8

    Article  MathSciNet  Google Scholar 

  23. TIAN, L. and RAJAPAKSE, R. Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. International Journal of Solids and Structures, 44(24), 7988–8005 (2007)

    Article  Google Scholar 

  24. LUO, J. and WANG, X. On the anti-plane shear of an elliptic nano inhomogeneity. European Journal of Mechanics A/Solids, 28(5), 926–934 (2009)

    Article  Google Scholar 

  25. KUSHCH, V. I. Elastic fields and effective stiffness tensor of spheroidal particle composite with imperfect interface. Mechanics of Materials, 124, 45–54 (2018)

    Article  Google Scholar 

  26. KUSHCH, V. I., MOGILEVSKAYA, S. G., STOLARSKI, H. K., and CROUCH, S. L. Elastic interaction of spherical nanoinhomogeneities with Gurtin-Murdoch type interfaces. Journal of the Mechanics and Physics of Solids, 59(9), 1702–1716 (2011)

    Article  MathSciNet  Google Scholar 

  27. WANG, X. and SCHIAVONE, P. Two circular inclusions with arbitrarily varied surface effects. Acta Mechanica, 226(5), 1471–1486 (2015)

    Article  MathSciNet  Google Scholar 

  28. DAI, M., SCHIAVONE, P., and GAO, C. F. A new method for the evaluation of the effective properties of composites containing unidirectional periodic nanofibers. Archive of Applied Mechanics, 87(4), 647–665 (2017)

    Article  Google Scholar 

  29. WANG, X. and SCHIAVONE, P. Surface effects in the deformation of an anisotropic elastic material with nano-sized elliptical hole. Mechanics Research Communications, 52, 57–61 (2013)

    Article  Google Scholar 

  30. DUAN, H. L., WANG, J., HUANG, Z. P., and KARIHALOO, B. L. Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society A, 461(2062), 3335–3353 (2005)

    Article  MathSciNet  Google Scholar 

  31. DUAN, H. L., WANG, J., HUANG, Z. P., and KARIHALOO, B. L. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids, 53(7), 1574–1596 (2005)

    Article  MathSciNet  Google Scholar 

  32. LEKHNITSKII, S. G. Anisotropic Plates, Gordon and Breach Science Publishers, New York (1968)

    Google Scholar 

  33. BENVENISTE, Y. and MILOH, T. Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 33(6), 309–323 (2001)

    Article  Google Scholar 

  34. BENVENISTE, Y. and MILOH, T. Soft neutral elastic inhomogeneities with membrane-type interface conditions. Journal of Elasticity, 88(2), 87–111 (2007)

    Article  MathSciNet  Google Scholar 

  35. MILLER, R. E. and SHENOY, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11, 139–147 (2000)

    Article  Google Scholar 

  36. SHENOY, V. B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Physical Review B, 71(9), 094104 (2005)

    Article  Google Scholar 

  37. RU, C. Q. Interface design of neutral elastic inclusions. International Journal of Solids and Structures, 35(7–8), 559–572 (1998)

    Article  Google Scholar 

  38. KUSHCH, V. I., SEVOSTIANOV, I., and MISHNAEVSKY, L. Stress concentration and effective stiffness of aligned fiber reinforced composite with anisotropic constituents. International Journal of Solids and Structures, 45(18–19), 5103–5117 (2008)

    Article  Google Scholar 

  39. MUSKHELISHVILI, N. I. Some Basic Problems of the Mathematical Theory of Elasticity, Noord-hoff, Groningen (1975)

    MATH  Google Scholar 

  40. FABER, G. Über polynomische Entwickelungen. Mathematische Annalen, 57(3), 389–408 (1903)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the foundation by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Funding

Project supported by the National Natural Science Foundation of China (No. 11902147) and the Natural Science Foundation of Jiangsu Province of China (No. BK20190393)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, P., Dai, M. Elliptical inclusion in an anisotropic plane: non-uniform interface effects. Appl. Math. Mech.-Engl. Ed. 43, 667–688 (2022). https://doi.org/10.1007/s10483-022-2845-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2845-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation