Skip to main content
Log in

Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The unsteady mixed convection of the Al2O3-Cu/H2O hybrid nanofluid flow near the stagnation point past a vertical plate is analyzed. The bvp4c technique is used to solve the resulting ordinary differential equations. The combined effects of the velocity and thermal slip are addressed. The effects of different relevant physical parameters are studied numerically. The results show that the heat transfer rate is reduced when the volume fraction of the nanoparticles increases, while the unsteadiness parameter has an opposite effect in the opposing flow. The presence of the slip parameter is proven to increase the skin friction coefficient while reduce the local Nusselt number in the buoyancy opposing flow. A contradictory result is observed in the buoyancy assisting flow. Meanwhile, the heat transfer rate is reduced in the buoyancy of the assisting and opposing flows when the thermal slip effect is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KAGGWA, A. and CARSON, J. K. Developments and future insights of using nanofluids for heat transfer enhancements in thermal systems: a review of recent literature. International Nano Letters, 9, 277–288 (2019)

    Article  Google Scholar 

  2. SIDIK, N. A. C., ADAMU, I. M., JAMIL, M. M., KEFAYATI, G. H. R., MAMAT, R., and NAJAFI, G. Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. International Communications in Heat and Mass Transfer, 78, 68–79 (2016)

    Article  Google Scholar 

  3. HUMINIC, G. and HUMINIC, A. Hybrid nanofluids for heat transfer applications — a state-of-the-art review. International Journal of Heat and Mass Transfer, 125, 82–103 (2018)

    Article  Google Scholar 

  4. SHAH, T. R. and ALI, H. M. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Solar Energy, 183, 173–203 (2019)

    Article  Google Scholar 

  5. SURESH, S., VENKITARAJ, K. P., and SELVAKUMAR, P. Synthesis, characterisation of Al2O3-Cu nanocomposite powder and water-based nanofluids. Advanced Materials Research, 328–330, 1560–1567 (2011)

    Article  Google Scholar 

  6. DEVI, S. S. U. and DEVI, S. P. A. Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Canadian Journal of Physics, 94, 490–496 (2016)

    Article  Google Scholar 

  7. DEVI, S. S. U. and DEVI, S. P. A. Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet. Journal of the Nigerian Mathematical Society, 36, 419–433 (2017)

    MathSciNet  MATH  Google Scholar 

  8. ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Viscous dissipation and MHD hybrid nanofluid flow towards an exponentially stretching/shrinking surface. Neural Computing and Applications, 33, 11285–11295 (2021)

    Article  Google Scholar 

  9. JAYADEVAMURTHY, P. G. R., KUMAR RANGASWAMY, N., PRASANNAKUMARA, B. C., and NISAR, K. S. Emphasis on unsteady dynamics of bioconvective hybrid nanofluid flow over an upward-downward moving rotating disk. Numerical Methods for Partial Differential Equations (2020) https://doi.org/10.1002/num.22680

  10. WAINI, I., ISHAK, A., and POP, I. Flow and heat transfer of a hybrid nanofluid past a permeable moving surface. Chinese Journal of Physics, 66, 606–619 (2020)

    Article  MathSciNet  Google Scholar 

  11. KHASHI’IE, N. S., ARIFIN, N. M., POP, I., and NAZAR, R. Dual solutions of bioconvection hybrid nanofluid flow due to gyrotactic microorganisms towards a vertical plate. Chinese Journal of Physics, 72, 461–474 (2021)

    Article  MathSciNet  Google Scholar 

  12. ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chinese Journal of Physics, 66, 630–644 (2020)

    Article  MathSciNet  Google Scholar 

  13. RAMACHANDRAN, N., CHEN, T. S., and ARMALY, B. F. Mixed convection in stagnation flows adjacent to vertical surfaces. Journal of Heat Transfer, 110, 373–377 (1988)

    Article  Google Scholar 

  14. DEVI, C. D. S., TAKHAR, H. S., and NATH, G. Unsteady mixed convection flow in stagnation region adjacent to a vertical surface. Heat and Mass Transfer, 26, 71–79 (1991)

    Google Scholar 

  15. SESHADRI, R., SREESHYLAN, N., and NATH, G. Unsteady mixed convection flow in the stagnation region of a heated vertical plate due to impulsive motion. International Journal of Heat and Mass Transfer, 45, 1345–1352 (2002)

    Article  Google Scholar 

  16. HIEMENZ, K. Die grenzschicht an einem in den gleichförmigen flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechnical Journal, 326, 321–324 (1911)

    Google Scholar 

  17. ECKERT, E. R. G. Die berechnung des warmeubergangas in der laminaren grenzschicht unstromter korper. VDI Forschungsh, 416, 1–24 (1942)

    MathSciNet  Google Scholar 

  18. ROSTAMI, M. N., DINARVAND, S., and POP, I. Dual solutions for mixed convective stagnationpoint flow of an aqueous silica-alumina hybrid nanofluid. Chinese Journal of Physics, 56, 2465–2478 (2018)

    Article  Google Scholar 

  19. ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Unsteady MHD mixed convection flow in hybrid nanofluid at three-dimensional stagnation point. Mathematics, 9, 549 (2021)

    Article  Google Scholar 

  20. ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Unsteady EMHD stagnation point flow over a stretching/shrinking sheet in a hybrid Al2O3-Cu/H2O nanofluid. International Communications in Heat and Mass Transfer, 123, 105205 (2021)

    Article  Google Scholar 

  21. ABBAS, Z. and HAYAT, T. Stagnation slip flow and heat transfer over a nonlinear stretching sheet. Numerical Methods for Partial Differential Equations, 27, 302–314 (2011)

    Article  MathSciNet  Google Scholar 

  22. ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Unsteady MHD stagnation point flow-induced stretching/shrinking sheet of hybrid nanofluid by exponentially permeable. Engineering Science and Technology, an International Journal, 24, 1201–1210 (2021)

    Article  Google Scholar 

  23. ARANI, A. A. A. and ABEROUMAND, H. Stagnation-point flow of Ag-CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis. Powder Technology, 380, 152–163 (2021)

    Article  Google Scholar 

  24. BHATTACHARYYA, K., MUKHOPADHYAY, S., and LAYEK, G. C. Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet. International Journal of Heat and Mass Transfer, 54, 308–313 (2011)

    Article  Google Scholar 

  25. KAUSAR, M. S., HUSSANAN, A., MAMAT, M., and AHMAD, B. Boundary layer flow through Darcy-Brinkman porous medium in the presence of slip effects and porous dissipation. Symmetry, 11, 659 (2019)

    Article  Google Scholar 

  26. MARTIN, M. J. and BOYD, I. D. Momentum and heat transfer in a laminar boundary layer with slip flow. Journal of Thermophysics and Heat Transfer, 20, 710–719 (2006)

    Article  Google Scholar 

  27. CAO, K. and BAKER, J. Slip effects on mixed convective flow and heat transfer from a vertical plate. International Journal of Heat and Mass Transfer, 52, 3829–3841 (2009)

    Article  Google Scholar 

  28. JAMALUDIN, A., NAZAR, R., and POP, I. Three-dimensional magnetohydrodynamic mixed convection flow of nanofluids over a nonlinearly permeable stretching/shrinking sheet with velocity and thermal slip. Applied Sciences-Basel, 8, 1128 (2018)

    Article  Google Scholar 

  29. ANUAR, N. S., BACHOK, N., and POP, I. Numerical computation of dusty hybrid nanofluid flow and heat transfer over a deformable sheet with slip effect. Mathematics, 9, 643 (2021)

    Article  Google Scholar 

  30. WAINI, I., ISHAK, A., and POP, I. Melting heat transfer of a hybrid nanofluid flow towards a stagnation point region with second-order slip. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 235, 405–415 (2021)

    Article  Google Scholar 

  31. BAKAR, S. A., ARIFIN, N. M., KHASHIIE, N. S., and BACHOK, N. Hybrid nanofluid flow over a permeable shrinking sheet embedded in a porous medium with radiation and slip impacts. Mathematics, 9, 878 (2021)

    Article  Google Scholar 

  32. ABDULLAH, A. A., IBRAHIM, F. S., GAWAD, A. A., and BATYYB, A. Investigation of unsteady mixed convection flow near the stagnation point of a heated vertical plate embedded in a nanofluidsaturated porous medium by self-similar technique. American Journal of Energy Engineering, 3, 42–51 (2015)

    Article  Google Scholar 

  33. TIWARI, R. K. and DAS, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50, 2002–2018 (2007)

    Article  Google Scholar 

  34. GHALAMBAZ, M., ROSCAC, N. C., ROSCA, A. V., and POP, I. Mixed convection and stability analysis of stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical plate. International Journal of Numerical Methods for Heat & Fluid Flow, 30, 3737–3754 (2020)

    Article  Google Scholar 

  35. TAKABI, B. and SALEHI, S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering, 6, 147059 (2014)

    Article  Google Scholar 

  36. OZTOP, H. F. and ABU-NADA, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Numerical Methods for Heat & Fluid Flow, 29, 1326–1336 (2008)

    Article  Google Scholar 

  37. LOK, Y. Y., AMIN, N., CAMPEAN, D., and POP, I. Steady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface. International Journal of Numerical Methods for Heat & Fluid Flow, 15, 654–670 (2005)

    Article  Google Scholar 

  38. ISHAK, A., NAZAR, R., BACHOK, N., and POP, I. MHD mixed convection flow near the stagnation point on a vertical permeable surface. Physica A: Statistical Mechanics and its Applications, 389, 40–46 (2010)

    Article  Google Scholar 

  39. DINARVAND, S. and HOSSEINI, R. Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model. International Journal of Numerical Methods for Heat & Fluid Flow, 26, 40–62 (2016)

    Article  MathSciNet  Google Scholar 

  40. MAHDY, A. Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet. Nuclear Engineering and Design, 249, 248–255 (2012)

    Article  Google Scholar 

  41. MUKHOPADHYAY, S. and ANDERSSON, H. I. Effects of slip and heat transfer analysis of flow over an unsteady stretching surface. Heat and Mass Transfer, 45, 1447–1452 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The current study is funded by the Research University Grant (GUP-2019-034) from the Universiti Kebangsaan Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nazar.

Additional information

Citation: ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point. Applied Mathematics and Mechanics (English Edition), 43(4), 547–556 (2022) https://doi.org/10.1007/s10483-022-2823-6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zainal, N.A., Nazar, R., Naganthran, K. et al. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point. Appl. Math. Mech.-Engl. Ed. 43, 547–556 (2022). https://doi.org/10.1007/s10483-022-2823-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2823-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation