Skip to main content

Advertisement

Log in

On the energy conversion in electrokinetic transports

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Energy conversion in micro/nano-systems is a subject of current research, among which the electrokinetic energy conversion has attracted extensive attention. However, there exist two different definitions on the electrokinetic energy conversion efficiency in literature. A few researchers defined the efficiency using the pure pressure-driven flow rate, while other groups defined the efficiency based on the flow rate with the inclusion of the effect of the streaming potential field. In this work, both definitions are investigated for different fluid types under the periodic electrokinetic flow condition. For Newtonian fluids, the two definitions give similar results. However, for viscoelastic fluids, these two definitions lead to significant difference. The efficiency defined by the pure pressure-driven flow rate even exceeds 100% in a certain range of the parameters. The result shows that in the case of viscoelastic flow, it is incorrect to define the energy conversion efficiency by pure pressure-driven flow rate. At the same time, the reason for this problem is clarified through comprehensive analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MAHAPATRA, B. and BANDOPADHYAY, A. Electroosmosis of a viscoelastic fluid over nonuniformly charged surfaces: effect of fluid relaxation and retardation time. Physics of Fluids, 32(3), 032005 (2020)

    Article  Google Scholar 

  2. SADEK, S. H. and PINHO, F. T. Electro-osmotic oscillatory flow of viscoelastic fluids in a microchannel. Journal of Non-Newtonian Fluid Mechanics, 266, 46–58 (2019)

    Article  MathSciNet  Google Scholar 

  3. CHAKRABORTY, S. and DAS, S. Streaming-field-induced convective transport and its influence on the electroviscous effects in narrow fluidic confinement beyond the Debye-Huckel limit. Physical Review E, 77(3), 037303 (2008)

    Article  Google Scholar 

  4. DAS, S., GUHA, A., and MITRA, S. K. Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers. Analytica Chimica Acta, 804, 159–166 (2013)

    Article  Google Scholar 

  5. FERRÁS, L. L., AFONSO, A., ALVES, M., NÓBREGA, J., and PINHO, F. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: analytical and semi-analytical solutions. Physics of Fluids, 28(9), 093102 (2016)

    Article  Google Scholar 

  6. GHOSH, U. Electrokinetic effects in helical flow of non-linear viscoelastic fluids. Physics of Fluids, 32(5), 052004 (2020)

    Article  Google Scholar 

  7. MAHAPATRA, B. and BANDOPADHYAY, A. Numerical analysis of combined electroosmoticpressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces. Physics of Fluids, 33(1), 12001 (2021)

    Article  Google Scholar 

  8. SARMA, R., DEKA, N., SARMA, K., and MONDAL, P. K. Electroosmotic flow of Phan-Thien-Tanner fluids at high zeta potentials: an exact analytical solution. Physics of Fluids, 30(6), 062001 (2018)

    Article  Google Scholar 

  9. FAN, B., BHATTACHARYA, A., and BANDARU, P. R. Enhanced voltage generation through electrolyte flow on liquid-filled surfaces. Nature Communications, 9, 4050 (2018)

    Article  Google Scholar 

  10. ALI, N., HUSSAIN, S., and ULLAH, K. Theoretical analysis of two-layered electro-osmotic peristaltic flow of FENE-P fluid in an axisymmetric tube. Physics of Fluids, 32(2), 023105 (2020)

    Article  Google Scholar 

  11. SCHNITZER, O. and YARIV, E. Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion. Journal of Fluid Mechanics, 786, 84–109 (2016)

    Article  MathSciNet  Google Scholar 

  12. SIRIA, A., PONCHARAL, P., BIANCE, A. L., FULCRAND, R., BLASE, X., PURCELL, S. T., and PURCELL, L. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. nature, 794(7438), 455–458 (2013)

    Article  Google Scholar 

  13. OSTERLE, J. F. Electrokinetic energy conversion. Journal of Applied Mechanics, 31, 161–164 (1964)

    Article  Google Scholar 

  14. DAIGUJI, H., YANG, P., SZERI, A., and MAJUMDAR, A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Letters, 4, 2315–2321 (2004)

    Article  Google Scholar 

  15. VAN DER HEYDEN, F. H., BONTHUIS, D. J., STEIN, D., MEYER, C., and DEKKER, C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Letters, 6, 2232–2237 (2006)

    Article  Google Scholar 

  16. VAN DER HEYDEN, F. H., BONTHUIS, D. J., STEIN, D., MEYER, C., and DEKKER, C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Letters, 7, 1022–1025 (2007)

    Article  Google Scholar 

  17. WANG, M. and KANG, Q. Electrochemomechanical energy conversion efficiency in silica nanochannels. Microfluidics and Nanofluidics, 9(2–3), 181–190 (2010)

    Article  Google Scholar 

  18. CHANG, C. C. and YANG, R. J. Electrochemomechanical energy conversion efficiency in silica nanochannels. Applied Physics Letters, 99(8), 083102 (2011)

    Article  MathSciNet  Google Scholar 

  19. PENNATHUR, S., EIJKEL, J. C. T., and VAN DEN BERG, A. Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab on a Chip, 7(10), 1234–1237 (2007)

    Article  Google Scholar 

  20. YANG, J., LU, F., KOSTIUK, L. W., and KWOK, D. Y. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. Journal of Micromechanics and Microengineering, 13, 963–970 (2003)

    Article  Google Scholar 

  21. DAIGUJI, H., OKA, Y., ADACHI, T., and SHIRONO, K. Theoretical study on the efficiency of nanofluidic batteries. Electrochemistry Communications, 8, 1796–1800 (2006)

    Article  Google Scholar 

  22. ZHANG, R., WANG, S., YEH, M. H., PAN, C., LIN, L., YU, R., ZHANG, Y., ZHENG, L., JIAO, Z., and WANG, Z. L. A streaming potential/current-based microfluidic direct current generator for self-powered nanosystems. Advanced Materials, 27, 6482–6487 (2015)

    Article  Google Scholar 

  23. CHANDA, S., SINHA, S., and DAS, S. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter, 10, 7558–7568 (2014)

    Article  Google Scholar 

  24. PATWARY, J., CHEN, G., and DAS, S. Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density. Microfluidics and Nanofluidics, 20, 37 (2016)

    Article  Google Scholar 

  25. KORANLOU, A., ASHRAFIZADEH, S. N., and SADEGHI, A. Enhanced electrokinetic energy harvesting from soft nanochannels by the inclusion of ionic size. Journal of Physics D: Applied Physics, 52, 155502 (2019)

    Article  Google Scholar 

  26. XUAN, X. and LI, D. Thermodynamic analysis of electrokinetic energy conversion. Journal of Power Sources, 156, 677–684 (2006)

    Article  Google Scholar 

  27. GOSWAMI, P. and CHAKRABORTY, S. Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip. Langmuir, 26, 581–590 (2010)

    Article  Google Scholar 

  28. BANDOPADHYAY, A. and CHAKRABORTY, S. Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids. Applied Physics Letters, 101, 043905 (2012)

    Article  Google Scholar 

  29. NGUYEN, T., XIE, Y., VREEDE, L. J. D., VAN DEN BERG, A., and EIJKEL, J. C. T. Highly enhanced energy conversion from the streaming current by polymer addition. Lab on a Chip, 13, 3210–3216 (2013)

    Article  Google Scholar 

  30. MEI, L., YEH, L. H., and QIAN, S. Buffer anions can enormously enhance the electrokinetic energy conversion in nanofluidics with highly overlapped double layers. Nano Energy, 32, 374–381 (2017)

    Article  Google Scholar 

  31. DING, Z. D. and JIAN, Y. J. Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels: a linear analysis. Journal of Fluid Mechanics, 919, A20 (2021)

    Article  MathSciNet  Google Scholar 

  32. DING, Z., JIAN, Y., and TAN, W., Electrokinetic energy conversion of two-layer fluids through nanofluidic channels. Journal of Fluid Mechanics, 863, 1062–1090 (2019)

    Article  MathSciNet  Google Scholar 

  33. ECKMANN. D. and GROTBERG, J. Experiments on transition to turbulence in oscillatory pipe flow. Journal of Fluid Mechanics, 222, 329–350 (1991)

    Article  Google Scholar 

  34. CASANELLAS, L. and ORTIN, J. Laminar oscillatory flow of Maxwell and Oldroyd-B fluids: theoretical analysis. Journal of Non-Newtonian Fluid Mechanics, 166, 1315–1326 (2011)

    Article  Google Scholar 

  35. DEL RIO, J., DE HARO, M. L., and WHITAKER, S. Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Physical Review E, 58, 6323–6327 (1998)

    Article  Google Scholar 

  36. DING, Z. and JIAN, Y. Resonance behaviors in periodic viscoelastic electrokinetic flows: a universal Deborah number. Physics of Fluids, 33, 032023 (2021)

    Article  Google Scholar 

  37. OLTHUIS, W., SCHIPPERS, B., EIJKEL, J. C. T., and VAN DEN BERG, A. Energy from streaming current and potential. Sensors and Actuators B: Chemical, 111–112, 385–389 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Jian.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11902165, 11772162, and 11862018), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Nos. 2019BS01004 and 2021MS01007), and the Inner Mongolia Grassland Talent (No. 12000-12102013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Chang, L., Tian, K. et al. On the energy conversion in electrokinetic transports. Appl. Math. Mech.-Engl. Ed. 43, 263–274 (2022). https://doi.org/10.1007/s10483-022-2810-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2810-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation