Skip to main content
Log in

Low-velocity impact of rectangular foam-filled fiber metal laminate tubes

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Through theoretical analysis and finite element simulation, the low-velocity impact of rectangular foam-filled fiber metal laminate (FML) tubes is studied in this paper. According to the rigid-plastic material approximation with modifications, simple analytical solutions are obtained for the dynamic response of rectangular foam-filled FML tubes. The numerical calculations for low-velocity impact of rectangular foam-filled FML tubes are conducted. The accuracy of analytical solutions and numerical results is verified by each other. Finally, the effects of the metal volume fraction of FMLs, the number of the metal layers in FMLs, and the foam strength on the dynamic response of foam-filled tubes are discussed through the analytical model in details. It is shown that the force increases with the increase in the metal volume fraction in FMLs, the number of the metal layers in FML, and the foam strength for the given deflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XU, Y. M., LI, H. G., YANG, Y. F., HU, Y. B., and TAO, J. Determination of residual stresses in Ti/CFRP laminates after preparation using multiple methods. Composite Structures, 210, 715–723 (2019)

    Article  Google Scholar 

  2. LI, H. G., XU, Y. W., HUA, X. G., LIU, C., and TAO, J. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences. Composite Structures, 187, 354–363 (2018)

    Article  Google Scholar 

  3. AMIRI, A., MOHAMMADIMEHR, M., and ANVARI, M. Stress and buckling analysis of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets. Applied Mathematics and Mechanics (English Edition), 41(7), 1027–1038 (2020) https://doi.org/10.1007/s10483-020-2627-7

    Article  MathSciNet  Google Scholar 

  4. ZHOU, H. Y., JIA, K. C., WANG, X. J., XIONG, M. X., and WANG, Y. H. Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs. Thin-Walled Structures, 154, 106898 (2020)

    Article  Google Scholar 

  5. JING, L., LIU, K., SU, X. Y., and GUO, X. Experimental and numerical study of square sandwich panels with layered-gradient foam cores to air-blast loading. Thin-Walled Structures, 161, 107445 (2021)

    Article  Google Scholar 

  6. LU, Z. X., HUANG, J. X., and YUAN, Z. S. Effects of microstructure on uniaxial strength asymmetry of open-cell foams. Applied Mathematics and Mechanics (English Edition), 36(1), 37–46 (2015) https://doi.org/10.1007/s10483-015-1893-9

    Article  MathSciNet  Google Scholar 

  7. XIANG, X. M., ZOU, S. M., HA, N. S., LU, G. X., and KONG, I. Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial crushing. Composites Part B: Engineering, 198, 108216 (2020)

    Article  Google Scholar 

  8. ZHANG, J. X., QIN, Q. H., XIANG, C. P., and WANG, T. J. Plastic analysis of multilayer sandwich beams with metal foam cores. Acta Mechanica, 227(9), 2477–2491 (2016)

    Article  MathSciNet  Google Scholar 

  9. ZHANG, J., QIN, Q., AI, W., WANG, Z., and WANG, T. J. Indentation of metal foam core sandwich beams: experimental and theoretical investigations. Experimental Mechanics, 56(5), 771–784 (2016)

    Article  Google Scholar 

  10. AFHBY, M. F., EVANS, A. G., FLECK, N. A., GIBSON, L. J., HUTCHINSON, J. W., and WADLEY, H. N. G. Metal Foams: a Design Guide, Butterworth-Heinemann, Boston, MA (2000)

    Google Scholar 

  11. HALL, I. W., GUDEN, M., and CLAAR, T. D. Transverse and longitudinal crushing of aluminum-foam filled tubes. Scripta Materialia, 46, 513–518 (2002)

    Article  Google Scholar 

  12. NIKNEJAD, A., ELAHI, S. A., and LIAGHAT, G. H. Experimental investigation on the lateral compression in the foam-filled circular tubes. Materials & Design, 36, 24–34 (2012)

    Article  Google Scholar 

  13. NIKNEJAD, A., ASSAEE, H., ELAHI, S. A., and GOLRIZ, A. Flattening process of empty and polyurethane foam-filled E-glass/vinylester composite tubes—an experimental study. Composite Structures, 100, 479–492 (2013)

    Article  Google Scholar 

  14. FANG, J. G., GAO, Y. K., SUN, G. Y., ZHANG, Y. T., and LI, Q. Parametric analysis and multiobjective optimization for functionally graded foam-filled thin-wall tube under lateral impact. Computational Materials Science, 90, 265–275 (2014)

    Article  Google Scholar 

  15. NIKNEJAD, A. and RAHMANI, D. M. Experimental and theoretical study of the lateral compression process on the empty and foam-filled hexagonal columns. Materials & Design, 53, 250–261 (2014)

    Article  Google Scholar 

  16. YAN, L. B., CHOUW, N., and JAYARAMAN, K. Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes. Composites Part B: Engineering, 63, 15–26 (2014)

    Article  Google Scholar 

  17. ELAHI, S. A., ROUZEGAR, J., NIKNEJAD, A., and ASSAEE, H. Theoretical study of absorbed energy by empty and foam-filled composite tubes under lateral compression. Thin-Walled Structures, 114, 1–10 (2017)

    Article  Google Scholar 

  18. SU, M. M., WANG, H., and HAO, H. Axial and radial compressive properties of alumina-aluminum matrix syntactic foam filled thin-walled tubes. Composite Structures, 226, 111197 (2019)

    Article  Google Scholar 

  19. ZHANG, B. Y., WANG, L., ZHANG, J., JIANG, Y. X., WANG, W., and WU, G. H. Deformation and energy absorption properties of cenosphere/aluminum syntactic foam-filled circular tubes under lateral quasi-static compression. International Journal of Mechanical Sciences, 192, 106126 (2021)

    Article  Google Scholar 

  20. ZHU, G. H., ZHAO, Z. H., HU, P., LUO, G., ZHAO, X., and YU, Q. On energy-absorbing mechanisms and structural crashworthiness of laterally crushed thin-walled structures filled with aluminum foam and CFRP skeleton. Thin-Walled Structures, 160, 107390 (2021)

    Article  Google Scholar 

  21. AN, X. Z., GAO, Y. K., FANG, J. G., SUN, G. Y., and LI, Q. Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets. Thin-Walled Structures, 91, 63–71 (2015)

    Article  Google Scholar 

  22. SHIRAVAND, A. and ASGARI, M. Hybrid metal-composite conical tubes for energy absorption; theoretical development and numerical simulation. Thin-Walled Structures, 145, 106442 (2019)

    Article  Google Scholar 

  23. MAMSOR, M. A., AHMAD, Z., and ABDULLAH, M. R. Experimental studies on the impact characteristics of seamless fibre metal laminate (FML) tubes. Materials Today: Proceedings, 39, 1077–1081 (2021)

    Google Scholar 

  24. JONES, N. Note on the impact behaviour of fibre-metal laminates. International Journal of Impact Engineering, 108, 147–152 (2017)

    Article  Google Scholar 

  25. ZHANG, J. X., QIN, Q. H., YANG, Y., YU, X. H., XIE, S. J., and WANG, T. J. Dynamic response of foam-filled rectangular tubes subjected to low-velocity impact. International Journal of Applied Electromagnetics and Mechanics, 59(4), 1441–1449 (2019)

    Article  Google Scholar 

  26. TAGARIELLI, V. L., FLECK, N. A., and DESHPANDE, V. S. Collapse of clamped and simply supported composite sandwich beams in three-point bending. Composites Part B: Engineering, 35(6–8), 523–534 (2004)

    Article  Google Scholar 

  27. DESHPANDE, V. S. and FLECK, N. A. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 48(6–7), 1253–1283 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Zhang.

Additional information

Citation: ZHANG, J. X. and GUO, H. Y. Low-velocity impact of rectangular foam-filled fiber metal laminate tubes. Applied Mathematics and Mechanics (English Edition), 42(12), 1733–1742 (2021) https://doi.org/10.1007/s10483-021-2799-7

Project supported by the National Natural Science Foundation of China (Nos. 11872291 and 11972281), the Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, the Fundamental Research Funds for the Central Universities (No. LEM21B01), the Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education (No. cj202002), and the Natural Science Basic Research Plan in Shanxi Province of China (No. 2020JM-034)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Guo, H. Low-velocity impact of rectangular foam-filled fiber metal laminate tubes. Appl. Math. Mech.-Engl. Ed. 42, 1733–1742 (2021). https://doi.org/10.1007/s10483-021-2799-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2799-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation