Skip to main content
Log in

Numerical method for simulating rarefaction shocks in the approximation of phase-flip hydrodynamics

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A finite-difference algorithm is proposed for numerical modeling of hydrodynamic flows with rarefaction shocks, in which the fluid undergoes a jump-like liquid-gas phase transition. This new type of flow discontinuity, unexplored so far in computational fluid dynamics, arises in the approximation of phase-flip (PF) hydrodynamics, where a highly dynamic fluid is allowed to reach the innermost limit of metastability at the spinodal, upon which an instantaneous relaxation to the full phase equilibrium (EQ) is assumed. A new element in the proposed method is artificial kinetics of the phase transition, represented by an artificial relaxation term in the energy equation for a “hidden” component of the internal energy, temporarily withdrawn from the fluid at the moment of the PF transition. When combined with an appropriate variant of artificial viscosity in the Lagrangian framework, the latter ensures convergence to exact discontinuous solutions, which is demonstrated with several test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SOKOLOWSKI-TINTEN, K., BIALKOWSKI, J., CAVALLERI, A., VON DER LINDE, D., OPARIN, A., MEYER-TER-VEHN, J., and ANISIMOV, S. I. Transient states of matter during short pulse laser ablation. Physical Review Letters, 81, 224–227 (1988)

    Article  Google Scholar 

  2. INOGAMOV, N. A., ANISIMOV, S. I., and RETHFELD, B. Rarefaction wave and gravitational equilibrium in a two-phase liquid-vapor medium. Journal of Experimental and Theoretical Physics, 88, 1143–1150 (1999)

    Article  Google Scholar 

  3. AGRANAT, M. B., ANISIMOV, S. I., ASHITKOV, S. I., ZHAKHOVSKII, V. V., INOGAMOV, N. A., KOMAROV, P. S., OVCHINNIKOV, A. V., FORTOV, V. E., KHOKHLOV, V. A., and SHEPELEV, V. V. Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses. JETP Letters, 91, 471–477 (2010)

    Article  Google Scholar 

  4. BASKO, M. M., KRIVOKORYTOV, M. S., VINOKHODOV, A. Y., SIDELNIKOV, Y. V., KRIVTSUN, V. M., MEDVEDEV, V. V., KIM, D. A., KOMPANETS, V. O., LASH, A. A., and KOSHELEV, K. N. Fragmentation dynamics of liquid-metal droplets under ultra-short laser pulses. Laser Physics Letters, 14, 036001 (2017)

    Article  Google Scholar 

  5. BRENNEN, C. E. Cavitation and Bubble Dynamics, Oxford University Press, New York (1995)

    MATH  Google Scholar 

  6. UTKIN, A. V., SOSIKOV, V. A., BOGACH, A. A., and FORTOV, V. E. Tension of liquids by shock waves. AIP Conference Proceedings, 706, 765–770 (2004)

    Article  Google Scholar 

  7. DE RESSÉGUIER, T., SIGNOR, L., DRAGON, A., BOUSTIE, M., ROY, G., and LLORCA, F. Experimental investigation of liquid spall in laser shock-loaded tin. Journal of Applied Physics, 101, 013506 (2007)

    Article  Google Scholar 

  8. STAN, C. A., WILLMOTT, P. R., STONE, H. A., KOGLIN, J. E., LIANG, M., AQUILA, A. L., ROBINSON, J. S., GUMERLOCK, K. L., BLAJ, G., SIERRA, R. G., BOUTET, S., GUILLET, S. A. H., CURTIS, R. H., VETTER, S. L., LOOS, H., TURNER, J. L., and DECKER, F. J. Negative pressures and spallation in water drops subjected to nanosecond shock waves. The Journal of Physical Chemistry Letters, 7, 2055–2062 (2016)

    Article  Google Scholar 

  9. COLOMBIER, J. P., COMBIS, P., BONNEAU, F., LE HARZIC, R., and AUDOUARD, E. Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Physical Review B, 71, 165406 (2005)

    Article  Google Scholar 

  10. ZHAO, N., MENTRELLI, A., RUGGERI, T., and SUGIYAMA, M. Admissible shock waves and shock-induced phase transitions in a van der Waals fluid. Physics of Fluids, 23, 086101 (2011)

    Article  Google Scholar 

  11. BASKO, M. M. Centered rarefaction wave with a liquid-gas phase transition in the approximation of “phase-flip” hydrodynamics. Physics of Fluids, 30, 123306 (2018)

    Article  Google Scholar 

  12. BLANDER, M. and KATZ, J. L. Bubble nucleation in liquids. AIChE Journal, 21, 833–848 (1975)

    Article  Google Scholar 

  13. MARTYNYUK, M. M. Phase explosion of a metastable fluid. Combustion, Explosion and Shock Waves, 13, 178–191 (1977)

    Article  Google Scholar 

  14. SKRIPOV, V. P. and SKRIPOV, A. V. Spinodal decomposition (phase transitions via unstable states). Soviet Physics Uspekhi, 22, 389–410 (1979)

    Article  Google Scholar 

  15. FAIK, S., BASKO, M. M., TAUSCHWITZ, A., IOSILEVSKIY, I., and MARUHN, J. A. Dynamics of volumetrically heated matter passing through the liquid-vapor metastable states. High Energy Density Physics, 8, 349–359 (2012)

    Article  Google Scholar 

  16. GRADY, D. E. Spall and fragmentation in high-temperature metals. High Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation (eds. DAVISON, L., GRADY, D. E., and SHAHINPOOR, M.), Springer, New York, 219–236 (1996)

    Chapter  Google Scholar 

  17. SAUREL, R., PETITPAS, F., and ABGRALL, R. Modelling phase transition in metastable liquids: application to cavitating and flashing flows. Journal of Fluid Mechanics, 607, 313–350 (2008)

    Article  MathSciNet  Google Scholar 

  18. ZEIN, A., HANTKE, M., and WARNECKE, G. Modeling phase transition for compressible two-phase flows applied to metastable liquids. Journal of Computational Physics, 229, 2964–2998 (2010)

    Article  MathSciNet  Google Scholar 

  19. CAI, Y., WU, H. A., and LUO, S. N. Spall strength of liquid copper and accuracy of the acoustic method. Journal of Applied Physics, 121, 105901 (2017)

    Article  Google Scholar 

  20. MAYER, A. E. and MAYER, P. N. Strain rate dependence of spall strength for solid and molten lead and tin. International Journal of Fracture, 222, 171–195 (2020)

    Article  Google Scholar 

  21. FARHAT, C., GERBEAU, J. F., and RALLU, A. FIVER: a finite volume method based on exact two-phase Riemann problems and sparse grids for multi-material flows with large density jumps. Journal of Computational Physics, 231, 6360–6379 (2012)

    Article  MathSciNet  Google Scholar 

  22. SHAHBAZI, K. Robust second-order scheme for multi-phase flow computations. Journal of Computational Physics, 339, 163–178 (2017)

    Article  MathSciNet  Google Scholar 

  23. ZHANG, C. and MENSHOV, I. Eulerian model for simulating multi-fluid flows with an arbitrary number of immiscible compressible components. Journal of Scientific Computing, 83, 31 (2020)

    Article  MathSciNet  Google Scholar 

  24. MARTYNYUK, M. M. Generalized van der Waals equation of state for liquids and gases. Zhurnal Fizicheskoi Khimii (Russian Journal of Physical Chemistry A), 65, 1716–1717 (1991)

    Google Scholar 

  25. MARTYNYUK, M. M. Transition of liquid metals into vapor in the process of pulse heating by current. International Journal of Thermophysics, 14, 457–470 (1993)

    Article  Google Scholar 

  26. BASKO, M. M. Generalized van der Waals equation of state for in-line use in hydrodynamic codes. Keldysh Institute Preprints (2018) https://doi.org/10.20948/prepr-2018-112-e

  27. RICHTMYER, R. D. and MORTON, K. W. Difference Methods for Initial-Value Problems, 2nd ed., Interscience Publishers, New York (1967)

    MATH  Google Scholar 

  28. LANDAU, L. D. and LIFSHITZ, E. M. Fluid Mechanics, 2nd ed., Pergamon Press, Oxford (1987)

    Google Scholar 

  29. ZEL’DOVICH, Y. B. and RAIZER, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover Publications, New York (2012)

    Google Scholar 

  30. MATTSSON, A. E. and RIDER, W. J. Artificial viscosity: back to the basics. International Journal for Numerical Methods in Fluids, 77, 400–417 (2015).

    Article  MathSciNet  Google Scholar 

  31. LANDSHOFF, R. A Numerical Method for Treating Fluid Flow in the Presence of Shocks, Report LA-1930, Los Alamos National Laboratory, Los Alamos (1955)

    Book  Google Scholar 

  32. VON NEUMANN, J. and RICHTMYER, R. D. A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics, 21, 232–237 (1950)

    Article  MathSciNet  Google Scholar 

  33. BASKO, M. M., SASOROV, P. V., MURAKAMI, M., NOVIKOV, V. G., and GRUSHIN, A. S. One-dimensional study of the radiation-dominated implosion of a cylindrical tungsten plasma column. Plasma Physics and Controlled Fusion, 54(5), 055003 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Basko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basko, M.M. Numerical method for simulating rarefaction shocks in the approximation of phase-flip hydrodynamics. Appl. Math. Mech.-Engl. Ed. 42, 871–884 (2021). https://doi.org/10.1007/s10483-021-2734-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2734-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation