Skip to main content

Advertisement

Log in

Peristaltic flow of a heated Jeffrey fluid inside an elliptic duct: streamline analysis

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The peristaltic flow of a heated Jeffrey fluid inside a duct with an elliptic cross-section is studied. A thorough heat transfer mechanism is interpreted by analyzing the viscous effects in the energy equation. The governing mathematical equations give dimensionless partial differential equations after simplification. The final simplified form of the mathematical equations is evaluated with respect to the relevant boundary conditions, and the exact solution is attained. The results are further illustrated by graphs, and the distinct aspects of peristaltic flow phenomena are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a 0, b 0 :

ellipse half axes

d :

wave amplitude

λ:

wavelength

\({\bar T_{\rm{w}}}\) :

tube wall temperature

c :

propagation velocity

D h :

hydraulic diameter of ellipse

\({\bar T_{\rm{b}}}\) :

bulk temperature

e :

eccentricity of ellipse

δ :

aspect ratio

ϕ :

occlusion

\(\dot \gamma \) :

rate of shear

Br :

Brickmann number

δ 1 :

relaxation to retardation time ratio

δ 2 :

time retardation parameter

References

  1. JAFFRIN, M. Y. and SHAPIRO, A. H. Peristaltic pumping. Annual Review of Fluid Mechanics, 3, 13–37 (1971)

    Article  Google Scholar 

  2. BARTON, C. and RAYNOR, S. Peristaltic flow in tubes. The Bulletin of Mathematical Biophysics, 30, 663–680 (1968)

    Article  Google Scholar 

  3. BÖHME, G. and FRIEDRICH, R. Peristaltic flow of viscoelastic liquids. Journal of Fluid Mechanics, 128, 109–122 (1983)

    Article  Google Scholar 

  4. SIDDIQUI, A. M. and SCHWARZ, W. H. Peristaltic flow of a second-order fluid in tubes. Journal of Non-Newtonian Fluid Mechanics, 53, 257–284 (1994)

    Article  Google Scholar 

  5. NADEEM, S. and AKRAM, S. Peristaltic flow of a Jeffrey fluid in a rectangular duct. Nonlinear Analysis: Real World Applications, 11, 4238–4247 (2010)

    Article  MathSciNet  Google Scholar 

  6. AKBAR, N. S. Peristaltic flow of a nanofluid in a diverging tube for Jeffrey fluid. Journal of Computational and Theoretical Nanoscience, 11, 1335–1341 (2014)

    Article  Google Scholar 

  7. RASHID, M., ANSAR, K., and NADEEM, S. Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Physica A: Statistical Mechanics and Its Applications, 553, 123979 (2020)

    Article  MathSciNet  Google Scholar 

  8. SALEEM, A., AKHTAR, S., ALHARBI, F. M., NADEEM, S., GHALAMBAZ, M., and ISSAKHOV, A. Physical aspects of peristaltic flow of hybrid nano fluid inside a curved tube having ciliated wall. Results in Physics, 19, 103431 (2020)

    Article  Google Scholar 

  9. AKRAM, S. and SALEEM, N. Analysis of heating effects and different wave forms on peristaltic flow of Carreau fluid in rectangular duct. Advances in Mathematical Physics, 2020, 1–14 (2020)

    Article  MathSciNet  Google Scholar 

  10. NADEEM, S., AKRAM, S., HAYAT, T., and HENDI, A. A. Peristaltic flow of a Carreau fluid in a rectangular duct. Journal of Fluids Engineering, 134, 041201 (2012)

    Article  Google Scholar 

  11. BUTT, A. W., AKBAR, N. S., and MIR, N. A. Heat transfer analysis of peristaltic flow of a Phan-Thien-Tanner fluid model due to metachronal wave of cilia. Biomechanics and Modeling in Mechanobiology, 19, 1925–1933 (2020)

    Article  Google Scholar 

  12. KHAN, L. A., RAZA, M., MIR, N. A., and ELLAHI, R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. Journal of Thermal Analysis and Calorimetry, 140, 879–890 (2020)

    Article  Google Scholar 

  13. SCHENK, J. and HAN, B. S. Heat transfer from laminar flow in ducts with elliptic cross-section. Applied Scientific Research, 17, 96–114 (1967)

    Article  Google Scholar 

  14. DONG, Z. F. and EBADIAN, M. A. A numerical analysis of thermally developing flow in elliptic ducts with internal fins. International Journal of Heat and Fluid Flow, 12, 166–172 (1991)

    Article  Google Scholar 

  15. SAKALIS, V. D., HATZIKONSTANTINOU, P. M., and KAFOUSIAS, N. Thermally developing flow in elliptic ducts with axially variable wall temperature distribution. International Journal of Heat and Mass Transfer, 45, 25–35 (2002)

    Article  Google Scholar 

  16. SHARIAT, M., AKBARINIA, A., NEZHAD, A. H., BEHZADMEHR, A., and LAUR, R. Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts. Applied Thermal Engineering, 31, 2348–2359 (2011)

    Article  Google Scholar 

  17. RAGUEB, H. and MANSOURI, K. A numerical study of viscous dissipation effect on non-Newtonian fluid flow inside elliptical duct. Energy Conversion and Management, 68, 124–132 (2013)

    Article  Google Scholar 

  18. SALEEM, A., AKHTAR, S., NADEEM, S., ALHARBI, F. M., GHALAMBAZ, M., and ISSAKHOV, A. Mathematical computations for peristaltic flow of heated non-Newtonian fluid inside a sinusoidal elliptic duct. Physica Scripta, 95, 105009 (2020)

    Article  Google Scholar 

  19. ZHANG, L., ARAIN, M. B., BHATTI, M. M., ZEESHAN, A., and HAL-SULAMI, H. Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Applied Mathematics and Mechanics (English Edition), 41(4), 637–654 (2020) https://doi.org/10.1007/s10483-020-2599-7

    Article  Google Scholar 

  20. ARAIN, M. B., BHATTI, M. M., ZEESHAN, A., SAEED, T., and HOBINY, A. Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates. Mathematical Problems in Engineering, 2020, 1–7 (2020)

    Article  MathSciNet  Google Scholar 

  21. BHATTI, M. M. and ABDELSALAM, S. I. Thermodynamic entropy of a magnetized Ree-Eyring particle-fluid motion with irreversibility process: a mathematical paradigm. Zeitschrift für Angewandte Mathematik und Mechanik, e202000186 (2020) https://doi.org/10.1002/zamm.202000186

  22. ZHANG, L. J., BHATTI, M. M., MARIN, M., and Mekheimer, K. S. Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc-oxide (ZnO) nanoparticles. Entropy, 22, 1070 (2020)

    Article  Google Scholar 

  23. AKBAR, N. S. and BUTT, A. W. Heat transfer analysis of viscoelastic fluid flow due to metachronal wave of cilia. International Journal of Biomathematics, 7, 1450066 (2014)

    Article  MathSciNet  Google Scholar 

  24. YANG, Z. H., CHU, Y. M., and ZHANG, W. Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean. Journal of Inequalities and Applications, 2016, 1–10 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nadeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, S., Akhtar, S. & Saleem, A. Peristaltic flow of a heated Jeffrey fluid inside an elliptic duct: streamline analysis. Appl. Math. Mech.-Engl. Ed. 42, 583–592 (2021). https://doi.org/10.1007/s10483-021-2714-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2714-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation