Skip to main content
Log in

Analysis of a two-grid method for semiconductor device problem

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The mathematical model of a semiconductor device is governed by a system of quasi-linear partial differential equations. The electric potential equation is approximated by a mixed finite element method, and the concentration equations are approximated by a standard Galerkin method. We estimate the error of the numerical solutions in the sense of the Lq norm. To linearize the full discrete scheme of the problem, we present an efficient two-grid method based on the idea of Newton iteration. The main procedures are to solve the small scaled nonlinear equations on the coarse grid and then deal with the linear equations on the fine grid. Error estimation for the two-grid solutions is analyzed in detail. It is shown that this method still achieves asymptotically optimal approximations as long as a mesh size satisfies H = O(h1/2). Numerical experiments are given to illustrate the efficiency of the two-grid method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GUMMEL, H. K. A self-consistent iterative scheme for one-dimensional steady-state transistor calculation. IEEE Trans Electron Devices, 11(10), 455–465 (1964)

    Article  Google Scholar 

  2. DOUGLAS, J., JR. and YUAN, Y. R. Finite difference methods for the transient behavior of a semiconductor device. Computational Applied Mathematics, 6(1), 25–38 (1987)

    MathSciNet  MATH  Google Scholar 

  3. YUAN, Y. R. Characteristic finite element method and analysis for numerical simulation of a semiconductor device (in Chinese). Acta Mathematica Scientia, 13(3), 241–251 (1993)

    Article  MathSciNet  Google Scholar 

  4. ZLÁMAL, M. A. Finite element solution of the fundamental equations of semiconductor devices I. Mathematics of Computation, 46(1), 27–43 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. YUAN, Y. R. A mixed finite element method for the transient behavior of a semiconductor devices. Applied Mathematics — A Journal of Chinese Universities, 7(3), 452–463 (1992)

    MathSciNet  MATH  Google Scholar 

  6. YUAN, Y. R. Finite difference method and analysis for three-dimensional semiconductor device of heat conduction. Science in China (Series A), 39(11), 1140–1151 (1996)

    MathSciNet  MATH  Google Scholar 

  7. YANG, Q. Upwind finite volume schemes for semiconductor device. Numerical Mathematics — A Journal of Chinese Universities (English Series), 12(2), 150–161 (2003)

    MathSciNet  MATH  Google Scholar 

  8. YANG, Q. and YUAN, Y. R. An approximation of semiconductor device by mixed finite element method and characteristics-mixed finite element method. Applied Mathematics and Computation, 225, 407–424 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. XU, J. C. A novel two-grid method for semilinear equations. SIAM Journal on Scientific Computing, 15(1), 231–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. DAWSON, C. N., WHEELER, M. F., and WOODWARD, C. S. A two-grid finite difference scheme for nonlinear parabolic equations. SIAM Journal on Numerical Analysis, 35(2), 435–452 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. CHEN, Y. P., HUANG, Y. Q., and YU, D. H. A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations. International Journal for Numerical Methods in Engineering, 57(2), 193–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. CHEN, Y. P., LIU, H. W., and LIU, S. Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods. International Journal for Numerical Methods in Engineering, 69(2), 408–422 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. HE, Y. N. Two-level method based on finite element and crank-nicolson extrapolation for the time-depent navier-stokes equations. SIAM Journal on Numerical Analysis, 41(4), 1263–1285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. CAI, M. C., MU, M., and XU, J. C. Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM Journal on Numerical Analysis, 47(5), 3325–3338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. CAI, M. C., HUANG, P. Q., and MU, M. Some multilevel decoupled algorithms for a mixed Navier-Stokes/Darcy model. Advances in Computational Mathematics, 44(1), 115–145 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. XU, J. C. and ZHOU, A. H. A two-grid discretization scheme for eigenvalue problems. Mathematics of Computation, 70(233), 17–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. ZHONG, L. Q., LIU, C. M., and SHU, S. Two-level additive preconditioners for edge element discretizations of time-harmonic maxwell equations. Computers and Mathematics with Applications, 66(4), 432–440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. HUANG, P. Q., CAI, M. C., and WANG, F. A Newton type linearization based two grid method for coupling fluid flow with porous media flow. Applied Numerical Mathematics, 106, 182–198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. WANG, Y., CHEN, Y. P., HUANG, Y. Q., and LIU, Y. Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods. Applied Mathematics and Mechanics (English Edition), 40(11), 1657–1676 (2019) https://doi.org/10.1007/s10483-019-2538-7

    Article  MathSciNet  MATH  Google Scholar 

  20. BREZZI, F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Revue Française d’Automatique Informatique Recherche Opérationnelle Série Rouge, 8(R-2), 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  21. WHEELER, M. F. A priori L2 error estimates for Galerkin approximation to parabolic partial differential equation. SIAM Journal on Numerical Analysis, 10(4), 723–759 (1973)

    Article  MathSciNet  Google Scholar 

  22. LIU, S., CHEN, Y. P., HUANG, Y. Q., and ZHOU, J. Two-grid methods for miscible displacement problem by Galerkin methods and mixed finite-element methods. International Journal of Computer Mathematics, 95(8), 1453–1477 (2018)

    Article  MathSciNet  Google Scholar 

  23. CHEN, Y. P. and HU, H. Z. Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics. Communications in Computational Physics, 19(5), 1503–1528 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Project supported by the State Key Program of National Natural Science Foundation of China (No. 11931003) and the National Natural Science Foundation of China (Nos. 41974133, 11671157, and 11971410)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, Y., Huang, Y. et al. Analysis of a two-grid method for semiconductor device problem. Appl. Math. Mech.-Engl. Ed. 42, 143–158 (2021). https://doi.org/10.1007/s10483-021-2696-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2696-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation