Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Applied Mathematics and Mechanics
  3. Article
A review of computational modeling and deep brain stimulation: applications to Parkinson’s disease
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model

11 December 2021

Konstantinos Spiliotis, Jens Starke, … Rüdiger Köhling

The beta oscillation conditions in a simplified basal ganglia network

04 December 2018

Bing Hu, Xiyezi Diao, … Liqing Zong

Deep brain stimulation for monogenic Parkinson’s disease: a systematic review

18 January 2019

Tomi Kuusimäki, Jaana Korpela, … Valtteri Kaasinen

Deep brain stimulation for Parkinson’s Disease: A Review and Future Outlook

19 April 2022

Anahita Malvea, Farbod Babaei, … Jeongwon Park

Excitatory deep brain stimulation quenches beta oscillations arising in a computational model of the subthalamo-pallidal loop

12 May 2022

Seyed Mojtaba Alavi, Amin Mirzaei, … Reza Ebrahimpour

Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders

03 January 2019

Wolf-Julian Neumann, Robert S. Turner, … R. Mark Richardson

An electrophysiological perspective on Parkinson’s disease: symptomatic pathogenesis and therapeutic approaches

09 December 2021

Lan-Hsin Nancy Lee, Chen-Syuan Huang, … Chung-Chin Kuo

A systematic review of local field potential physiomarkers in Parkinson’s disease: from clinical correlations to adaptive deep brain stimulation algorithms

08 October 2022

Bernadette C. M. van Wijk, Rob M. A. de Bie & Martijn Beudel

Adaptive deep brain stimulation for Parkinson’s disease: looking back at the past decade on motor outcomes

06 December 2022

Qi An, Zixiao Yin, … Jianguo Zhang

Download PDF
  • Published: 18 November 2020

A review of computational modeling and deep brain stimulation: applications to Parkinson’s disease

  • Ying Yu1,
  • Xiaomin Wang1,
  • Qishao Wang1 &
  • …
  • Qingyun Wang1 

Applied Mathematics and Mechanics volume 41, pages 1747–1768 (2020)Cite this article

  • 1386 Accesses

  • 22 Citations

  • 135 Altmetric

  • Metrics details

Abstract

Biophysical computational models are complementary to experiments and theories, providing powerful tools for the study of neurological diseases. The focus of this review is the dynamic modeling and control strategies of Parkinson’s disease (PD). In previous studies, the development of parkinsonian network dynamics modeling has made great progress. Modeling mainly focuses on the cortex-thalamus-basal ganglia (CTBG) circuit and its sub-circuits, which helps to explore the dynamic behavior of the parkinsonian network, such as synchronization. Deep brain stimulation (DBS) is an effective strategy for the treatment of PD. At present, many studies are based on the side effects of the DBS. However, the translation from modeling results to clinical disease mitigation therapy still faces huge challenges. Here, we introduce the progress of DBS improvement. Its specific purpose is to develop novel DBS treatment methods, optimize the treatment effect of DBS for each patient, and focus on the study in closed-loop DBS. Our goal is to review the inspiration and insights gained by combining the system theory with these computational models to analyze neurodynamics and optimize DBS treatment.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. DORSEY, E., SHERER, T., OKUN, M., and BLOEM, B. The rise of Parkinson’s disease. American Scientist, 108, 176 (2020)

    Google Scholar 

  2. DEXTER, D. T. and JENNER, P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radical Biology and Medicine, 62, 132–144 (2013)

    Google Scholar 

  3. GALVAN, A. and WICHMANN, T. Pathophysiology of parkinsonism. Clinical Neurophysiology, 119, 1459–1474 (2008)

    Google Scholar 

  4. RUBIN, J. E., MCINTYRE, C. C., TURNER, R. S., and WICHMANN, T. Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects: basal ganglia activity patterns in parkinsonism. European Journal of Neuroscience, 36, 2213–2228 (2012)

    Google Scholar 

  5. SANTANIELLO, S., GALE, J. T., and SARMA, S. V. Systems approaches to optimizing deep brain stimulation therapies in Parkinson’s disease. WIREs Systems Biology and Medicine, 10, e1421 (2018)

  6. JAKOBS, M., LEE, D. J., and LOZANO, A. M. Modifying the progression of Alzheimer’s and Parkinson’s disease with deep brain stimulation. Neuropharmacology, 171, 107860 (2020)

    Google Scholar 

  7. PLOTKIN, J. L. and GOLDBERG, J. A. Thinking outside the box (and arrow): current themes in striatal dysfunction in movement disorders. Neuroscientist, 25, 359–379 (2019)

    Google Scholar 

  8. BAR-GAD, I., MORRIS, G., and BERGMAN, H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Progress in Neurobiology, 71, 439–473 (2003)

    Google Scholar 

  9. MALLET, N., DELGADO, L., CHAZALON, M., MIGUELEZ, C., and BAUFRETON, J. Cellular and synaptic dysfunctions in Parkinson’s disease: stepping out of the striatum. Cells, 8, 1005 (2019)

    Google Scholar 

  10. DAMODARAN, S., CRESSMAN, J. R., JEDRZEJEWSKI-SZMEK, Z., and BLACKWELL, K. T. Desynchronization of fast-spiking interneurons reduces-band oscillations and imbalance in firing in the dopamine-depleted striatum. Journal of Neuroscience, 35, 1149–1159 (2015)

    Google Scholar 

  11. ALBIN, R. L., YOUNG, A. B., and PENNEY, J. B. The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–375 (1989)

    Google Scholar 

  12. HUMPHRIES, M. D., WOOD, R., and GURNEY, K. Dopamine-modulated dynamic cell assemblies generated by the GABAergic striatal microcircuit. Neural Networks, 22, 1174–1188 (2009)

    Google Scholar 

  13. MANDALI, A., RENGASWAMY, M., CHAKRAVARTHY, V. S., and MOUSTAFA, A. A. A spiking basal ganglia model of synchrony, exploration and decision making. Frontiers in Neuroscience, 9, 191 (2015)

    Google Scholar 

  14. BAHUGUNA, J., AERTSEN, A., KUMAR, A., and BLACKWELL, K. T. Existence and control of go/no-go decision transition threshold in the striatum. PLoS Computational Biology, 11, e1004233 (2015)

  15. MUDDAPU, V. R., MANDALI, A., CHAKRAVARTHY, V. S., and RAMASWAMY, S. A computational model of loss of dopaminergic cells in Parkinson’s disease due to glutamate-induced excitotoxicity. Frontiers in Neural Circuits, 13, 11 (2019)

    Google Scholar 

  16. HODGKIN, A. L. and HUXLEY, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Bulletin of Mathematical Biology, 52, 25–71 (1990)

    Google Scholar 

  17. MA, J. and TANG, J. A review for dynamics in neuron and neuronal network. Nonlinear Dynamics, 89, 1569–1578 (2017)

    MathSciNet  Google Scholar 

  18. MA, J., YANG, Z., YANG, L., and TANG, J. A physical view of computational neurodynamics. Journal of Zhejiang University-Science A, 20, 639–659 (2019)

    Google Scholar 

  19. WANG, W. and WANG, R. Control strategy of central pattern generator gait movement under condition of attention selection. Applied Mathematics and Mechanics (English Edition), 37(7), 957-966 (2016) https://doi.org/10.1007/s10483-016-2096-9

  20. IZHIKEVICH, E. M. Simple model of spiking neurons. IEEE Transactions on Neural Network, 14, 1569–1572 (2003)

    Google Scholar 

  21. TERMAN, D., RUBIN, J. E., YEW, A. C., and WILSON, C. J. Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976 (2002)

    Google Scholar 

  22. RUBIN, J. E. and TERMAN, D. High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235 (2004)

    Google Scholar 

  23. SO, R. Q., KENT, A. R., and GRILL, W. M. Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of Computational Neuroscience, 32, 499–519 (2012)

    MATH  Google Scholar 

  24. BROWN, P. and WILLIAMS, D. Basal ganglia local field potential activity: character and functional significance in the human. Clinical Neurophysiology, 116, 2510–2519 (2005)

    Google Scholar 

  25. KREITZER, A. C. Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience, 32, 127–147 (2009)

    Google Scholar 

  26. DAMODARAN, S., EVANS, R. C., and BLACKWELL, K. T. Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum. Journal of Neurophysiology, 111, 836–848 (2014)

    Google Scholar 

  27. MCCARTHY, M. M., MOORE-KOCHLACS, C., GU, X., BOYDEN, E. S., HAN, X., and KOPELL, N. Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of the National Academy of Sciences, 108, 11620–11625 (2011)

    Google Scholar 

  28. WOLF, J. A. NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. Journal of Neuroscience, 25, 9080–9095 (2005)

    Google Scholar 

  29. KUMARAVELU, K., BROCKER, D. T., and GRILL, W. M. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson’s disease. Journal of Computational Neuroscience, 40, 207–229 (2016)

    MathSciNet  MATH  Google Scholar 

  30. YU, Y. and WANG, Q. Oscillation dynamics in an extended model of thalamic-basal ganglia. Nonlinear Dynamics, 98, 1065–1080 (2019)

    Google Scholar 

  31. CAIOLA, M. and HOLMES, M. H. Model and analysis for the onset of parkinsonian firing patterns in a simplified basal ganglia. International Journal of Neural, Systems, 29, 1850021 (2019)

    Google Scholar 

  32. GILLIES, A., WILLSHAW, D., and LI, Z. Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society B: Biological Science, 269, 545–551 (2002)

    Google Scholar 

  33. HOLGADO, A. J. N., TERRY, J. R., and BOGACZ, R. Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. Journal of Neuroscience, 30, 12340–12352 (2010)

    Google Scholar 

  34. PLENZ, D. and KITAL, S. T. A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. nature, 400, 677–682 (1999)

    Google Scholar 

  35. ROBINSON, P. A., RENNIE, C. J., and ROWE, D. L. Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 65, 041924 (2002)

    Google Scholar 

  36. VAN ALBADA, S. J., GRAY, R. T., DRYSDALE, P. M., and ROBINSON, P. A. Mean-field modeling of the basal ganglia-thalamocortical system II. Journal of Theoretical Biology, 257, 664–688 (2009)

    MATH  Google Scholar 

  37. VAN ALBADA, S. J. and ROBINSON, P. A. Mean-field modeling of the basal ganglia-thalamocortical system I. Journal of Theoretical Biology, 257, 642–663 (2009)

    MATH  Google Scholar 

  38. CHEN, M., GUO, D., WANG, T., JING, W., XIA, Y., XU, P., LUO, C., VALDES-SOSA, P. A., and YAO, D. Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Computational Biology, 10, e1003495 (2014)

    Google Scholar 

  39. FAN, D., ZHENG, Y., YANG, Z., and WANG, Q. Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit. Applied Mathematics and Mechanics (English Edition), 41(9), 1287–1302 (2020) https://doi.org/10.1007/s10483-020-2644-8

    Google Scholar 

  40. YU, Y., ZHANG, H., ZHANG, L., and WANG, Q. Dynamical role of pedunculopntine nucleus stimulation on controlling Parkinson’s disease. Physica A: Statistical Mechanics and Its Applications, 525, 834–848 (2019)

    MathSciNet  Google Scholar 

  41. KERR, C. C., VAN ALBADA, S. J., NEYMOTIN, S. A., CHADDERDON, G. L., ROBINSON, P. A., and LYTTON, W. W. Cortical information flow in Parkinson’s disease: a composite network/field model. Frontiers in Computational Neuroscience, 7, 39 (2013)

    Google Scholar 

  42. FASANO, A., APPEL-CRESSWELL, S., JOG, M., ZUROWKSKI, M., DUFF-CANNING, S., COHN, M., PICILLO, M., HONEY, C. R., PANISSET, M., and MUNHOZ, R. P. Medical management of Parkinson’s disease after initiation of deep brain stimulation. Canadian Journal of Neurological Sciences, 43, 626–634 (2016)

    Google Scholar 

  43. HICKEY, P. and STACY, M. Deep brain stimulation: a paradigm shifting approach to treat Parkinson’s disease. Frontiers in Neuroscience, 10, 173 (2016)

    Google Scholar 

  44. BENABID, A. L., CHABARDES, S., MITROFANIS, J., and POLLAK, P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. The Lancet Neurology, 8, 67–81 (2009)

    Google Scholar 

  45. PICILLO, M., LOZANO, A. M., KOU, N., PUPPI MUNHOZ, R., and FASANO, A. Programming deep brain stimulation for Parkinson’s disease: the Toronto western hospital algorithms. Brain Stimulation, 9, 425–437 (2016)

    Google Scholar 

  46. FAN, D., WANG, Z., and WANG, Q. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network. Communications in Nonlinear Science and Numerical Simulation, 36, 219–237 (2016)

    MathSciNet  MATH  Google Scholar 

  47. WEI, X. F. and GRILL, W. M. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. Journal of Neural Engineering, 6, 046008 (2009)

    Google Scholar 

  48. BUTSON, C. R. and MCINTYRE, C. C. Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimulation, 1, 7–15 (2008)

    Google Scholar 

  49. MORO, E., ESSELINK, R. J. A., XIE, J., HOMMEL, M., BENABID, A. L., and POLLAK, P. The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology, 59, 706–713 (2002)

    Google Scholar 

  50. PIRINI, M., ROCCHI, L., SENSI, M., and CHIARI, L. A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson’s disease. Journal of Computational Neuroscience, 26, 91–107 (2009)

    Google Scholar 

  51. WONGSARNPIGOON, A. and GRILL, W. M. Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm. Journal of Neural Engineering, 7, 046009 (2010)

    Google Scholar 

  52. FOUTZ, T. J. and MCINTYRE, C. C. Evaluation of novel stimulus waveforms for deep brain stimulation. Journal of Neural Engineering, 7, 066008 (2010)

    Google Scholar 

  53. DANESHZAND, M., FAEZIPOUR, M., and BARKANA, B. D. Computational stimulation of the basal ganglia neurons with cost effective delayed Gaussian waveforms. Frontiers in Computational Neuroscience, 11, 73 (2017)

    Google Scholar 

  54. LIU, C., WANG, J., DENG, B., LI, H., FIETKIEWICZ, C., and LOPARO, K. A. Noise-induced improvement of the parkinsonian state: a computational study. IEEE Transactions on Cybernetics, 49, 3655–3664 (2019)

    Google Scholar 

  55. HASHIMOTO, T., ELDER, C. M., OKUN,M. S., PATRICK, S. K., and VITEK, J. L. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. Journal of Neuroscience, 23, 1916–1923 (2003)

    Google Scholar 

  56. REESE, R., LEBLOIS, A., STEIGERWALD, F., PÖTTER-NERGER, M., HERZOG, J., MEHDORN, H. M., DEUSCHL, G., MEISSNER, W. G., and VOLKMANN, J. Subthalamic deep brain stimulation increases pallidal firing rate and regularity. Experimental Neurology, 229, 517–521 (2011)

    Google Scholar 

  57. FOUTZ, T. J. and MCINTYRE, C. C. Evaluation of novel stimulus waveforms for deep brain stimulation. Journal of Neural Engineering, 7, 066008 (2010)

    Google Scholar 

  58. CONTARINO, M. F., BOUR, L. J., VERHAGEN, R., LOURENS, M. A. J., DE BIE, R. M. A., VAN DEN MUNCKHOF, P., and SCHUURMAN, P. R. Directional steering: a novel approach to deep brain stimulation. Neurology, 83, 1163–1169 (2014)

    Google Scholar 

  59. CHIKEN, S. and NAMBU, A. Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist, 22, 313–322 (2016)

    Google Scholar 

  60. TASS, P. A. Stochastic phase resetting of two coupled phase oscillators stimulated at different times. Physical Review E, 67, 051902 (2003)

    MathSciNet  Google Scholar 

  61. TASS, P. A. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–88 (2003)

    MATH  Google Scholar 

  62. HAUPTMANN, C., POPOVYCH, O., and TASS, P. A. Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study. Biological Cybernetics, 93, 463–470 (2005)

    MathSciNet  MATH  Google Scholar 

  63. POPOVYCH, O. V. and TASS, P. A. Desynchronizing electrical and sensory coordinated reset neuromodulation. Frontiers in Human Neuroscience, 6, 58 (2012)

    Google Scholar 

  64. LYSYANSKY, B., POPOVYCH, O. V., and TASS, P. A. Optimal number of stimulation contacts for coordinated reset neuromodulation. Frontiers in Neuroengineering, 6, 5 (2013)

    Google Scholar 

  65. FAN, D. and WANG, Q. mproving desynchronization of parkinsonian neuronal network via triplet-structure coordinated reset stimulation. Journal of Theoretical Biology, 370, 157–170 (2015)

    MathSciNet  MATH  Google Scholar 

  66. YU, Y., HAO, Y., and WANG, Q. Model-based optimized phase-deviation deep brain stimulation for Parkinson’s disease. Neural Networks, 122, 308–319 (2020)

    Google Scholar 

  67. CAPOZZO, A., FLORIO, T., CONFALONE, G., MINCHELLA, D., MAZZONE, P., and SCARNATI, E. Low frequency stimulation of the pedunculopontine nucleus modulates electrical activity of subthalamic neurons in the rat. Journal of Neural Transmission, 116, 51–56 (2009)

    Google Scholar 

  68. GARCIA-RILL, E., LUSTER, B., D’ONOFRIO, S., MAHAFFEY, S., BISAGNO, V., and URBANO, F. J. Pedunculopontine arousal system physiology — deep brain stimulation (DBS). Sleep Science, 8, 153–161 (2015)

    Google Scholar 

  69. WANG, J. W., ZHANG, Y. Q., ZHANG, X. H., WANG, Y. P., LI, J. P., and LI, Y. J. Deep brain stimulation of pedunculopontine nucleus for postural instability and gait disorder after Parkinson disease: a meta-analysis of individual patient data. World Neurosurgery, 102, 72–78 (2017)

    Google Scholar 

  70. MARTENS, H. C. F., TOADER, E., DECR E, M. M. J., ANDERSON, D. J., VETTER, R., KIPKE, D. R., BAKER, K. B., JOHNSON, M. D., and VITEK, J. L. Spatial steering of deep brain stimulation volumes using a novel lead design. Clinical Neurophysiology, 122, 558–566 (2011)

    Google Scholar 

  71. BEUTER, A., LEFAUCHEUR, J. P., and MODOLO, J. Closed-loop cortical neuromodulation in Parkinson’s disease: an alternative to deep brain stimulation? Clinical Neurophysiology, 125, 874–885 (2014)

  72. MIRZA, K. B., GOLDEN, C. T., NIKOLIC, K., and TOUMAZOU, C. Closed-loop implantable therapeutic neuromodulation systems based on neurochemical monitoring. Frontiers in Neuroscience, 13, 808 (2019)

    Google Scholar 

  73. GRANT, P. F. and LOWERY, M. M. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21, 584–594 (2013)

    Google Scholar 

  74. LITTLE, S. and BROWN, P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease?: brain signals for control of DBS in PD. Annals of the New York Academy of Sciences, 1265, 9–24 (2012)

    Google Scholar 

  75. POPOVYCH, O. V. and TASS, P. A. Multisite delayed feedback for electrical brain stimulation. Frontiers in Physiology, 9, 46 (2018)

    Google Scholar 

  76. GUO, Y. and RUBIN, J. E. Multi-site stimulation of subthalamic nucleus diminishes thalamocortical relay errors in a biophysical network model. Neural Networks, 24, 602–616 (2011)

    Google Scholar 

  77. DANESHZAND, M., FAEZIPOUR, M., and BARKANA, B. D. Robust desynchronization of Parkinson’s disease pathological oscillations by frequency modulation of delayed feedback deep brain stimulation. PLoS One, 13, e0207761 (2018)

  78. SU, F., WANG, J., NIU, S., LI, H., DENG, B., LIU, C., and WEI, X. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network. Neural Networks, 98, 283–295 (2018)

    MATH  Google Scholar 

  79. MEIDAHL, A. C., TINKHAUSER, G., HERZ, D. M., CAGNAN, H., DEBARROS, J., and BROWN, P. Adaptive deep brain stimulation for movement disorders: the long road to clinical therapy: adaptive DBS review. Movement Disorders, 32, 810–819 (2017)

    Google Scholar 

  80. LITTLE, S., BEUDEL, M., ZRINZO, L., FOLTYNIE, T., LIMOUSIN, P., HARIZ, M., NEAL, S., CHEERAN, B., CAGNAN, H., GRATWICKE, J., AZIZ, T. Z., POGOSYAN, A., and BROWN, P. Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. Journal of Neurology, Neurosurgery, Psychiatry, 87, 717–721 (2016)

    Google Scholar 

  81. LITTLE, S., POGOSYAN, A., NEAL, S., ZAVALA, B., ZRINZO, L., HARIZ,M., FOLTYNIE, T., LIMOUSIN, P., ASHKAN, K., FITZGERALD, J., GREEN, A. L., AZIZ, T. Z., and BROWN, P. Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 74, 449–457 (2013)

    Google Scholar 

  82. VELISAR, A., SYRKIN-NIKOLAU, J., BLUMENFELD, Z., TRAGER, M. H., AFZAL, M. F., PRABHAKAR, V., and BRONTE-STEWART, H. Dual threshold neural closed loop deep brain stimulation in Parkinson disease patients. Brain Stimulation, 12, 868–876 (2019)

    Google Scholar 

  83. GORZELIC, P., SCHIFF, S. J., and SINHA, A. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson’s disease. Journal of Neural Engineering, 10, 026016 (2013)

    Google Scholar 

  84. MASTRO, K. J., ZITELLI, K. T., WILLARD, A. M., LEBLANC, K. H., KRAVITZ, A. V., and GITTIS, A. H. Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine-depleted mice. Nature Neuroscience, 20, 815–823 (2017)

    Google Scholar 

  85. MASTRO, K. J., BOUCHARD, R. S., HOLT, H. A. K., and GITTIS, A. H. Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. Journal of Neuroscience, 34, 2087–2099 (2014)

    Google Scholar 

  86. GITTIS, A. H., BERKE, J. D., BEVAN, M. D., CHAN, C. S., MALLET, N., MORROW, M. M., and SCHMIDT, R. New roles for the external globus pallidus in basal ganglia circuits and behavior. Journal of Neuroscience, 34, 15178–15183 (2014)

    Google Scholar 

  87. GITTIS, A. H. and YTTRI, E. A. Translating insights from optogenetics into therapies for Parkinson’s disease. Current Opinion in Biomedical Engineering, 8, 14–19 (2018)

    Google Scholar 

  88. LIANG, S. and WANG, Z. Controlling a neuron by stimulating a coupled neuron. Applied Mathematics and Mechanics (English Edition), 40(1), 13–24 (2019) https://doi.org/10.1007/s10483-019-2407-8

    MathSciNet  MATH  Google Scholar 

  89. ZHANG, X., LIU, S., ZHAN, F., WANG, J., and JIANG, X. The effects of medium spiny neuron morphologcial changes on basal ganglia network under external electric field: a computational modeling study. Frontiers in Computational Neuroscience, 11, 91 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Dynamics and Control, Beihang University, Beijing, 100191, China

    Ying Yu, Xiaomin Wang, Qishao Wang & Qingyun Wang

Authors
  1. Ying Yu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Xiaomin Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Qishao Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Qingyun Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Qishao Wang.

Additional information

Citation: YU, Y., WANG, X. M., WANG, Q. S., and WANG, Q. Y. A review of computational modeling and deep brain stimulation: applications to Parkinson’s disease. Applied Mathematics and Mechanics (English Edition), 41(12), 1747–1768 (2020) https://doi.org/10.1007/s10483-020-2689-9

Project supported by the National Natural Science Foundation of China (Nos. 11932003 and 11772019)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, X., Wang, Q. et al. A review of computational modeling and deep brain stimulation: applications to Parkinson’s disease. Appl. Math. Mech.-Engl. Ed. 41, 1747–1768 (2020). https://doi.org/10.1007/s10483-020-2689-9

Download citation

  • Received: 10 October 2020

  • Revised: 12 October 2020

  • Published: 18 November 2020

  • Issue Date: December 2020

  • DOI: https://doi.org/10.1007/s10483-020-2689-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • computational model
  • deep brain stimulation (DBS)
  • Parkinson’s disease (PD)
  • basal ganglia (BG)

Chinese Library Classification

  • O175.1

2010 Mathematics Subject Classification

  • 37N25
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.250.73

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.