Skip to main content
Log in

Elastic interaction between inclusions and tunable periodicity of superlattice structure in nanowires

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The elastic stress distribution and the variation of the elastic energy with spacing between two inclusions of arbitrary sizes in an infinite isotropic cylindrical rod are obtained by an analytical approach and the phase field microelasticity (PFM) simulation. The results show a near-attraction and far-repulsion elastic interaction between two inclusions with hydrostatic dilatation. The critical spacing, at which the interaction changes from attraction to repulsion, is on the order of the radius of the rod, dependent on the length and Poisson’s ratio of inclusions. Furthermore, the elastic energy calculations and PFM simulation results indicate that applying the local radial stress on the rod surface can modulate the elastic interaction between inclusions and adjust the periodicity of the superlattice nanowire structure. This can provide some guidelines for the tunable construction of superlattice nanowire structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London, Series A, 241 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  2. ESHELBY, J. D. The elastic interaction of point defects. Acta Metallurgica, 3 487–490 (1955)

    Google Scholar 

  3. BIMBERG, D., GRUNDMANN, M., LEDENTSOV, N. N., RUVIMOV, S. S., WEMER, P., RICHTER, U., HEYDENREICH, J., USTINOV, V. M., KOPEV, P. S., and ALFEROV, Z. I. Self-organization processes in MBE-grown quantum dot structures. Thin Solid Films, 267 32–36 (1995)

    Google Scholar 

  4. CLUZEAU, P., POULIN, P., JOLY, G., and NGUYEN, H. T. Interactions between colloidal inclusions in two-dimensional smectic-C* films. Physical Review E, 63 031702 (2001)

    Google Scholar 

  5. MUSEVIC, I., SKARABOT, M., TKALEC, U., RAVNIK, M., and ZUMER, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science, 313 954–958 (2006)

    Google Scholar 

  6. MURA, T. Micromechanics of Defects in Solids, Martinus Nijhoff, Hague, Netherlands (1987)

    MATH  Google Scholar 

  7. LAU, K. H. and KOHN, W. Elastic interaction of two atoms adsorbed on a solid surface. Surface Science, 65 607–618 (1977)

    Google Scholar 

  8. ZHONG, Z. and MEGUID, S. A. On the elastic field of a shpherical inhomogeneity with an imperfectly bonded interface. Journal of Elasticity, 46 91–113 (1997)

    MATH  Google Scholar 

  9. KUKTA, R. V., LIU, P., and KOURIS, D. On the dependence of adatom interactions on strain. Journal of the Mechanics and Physics of Solids, 51 2149–2167 (2003)

    MATH  Google Scholar 

  10. HE, L. H. Elastic interaction between force dipoles on a stretchable substrate. Journal of the Mechanics and Physics of Solids, 56 2957–2971 (2008)

    MathSciNet  MATH  Google Scholar 

  11. DUAN, H. L., WANG, J., and KARIHALOO, B. L. Theory of elasticity at the nanoscale. Advances in Applied Mechanics, 42 1–68 (2009)

    Google Scholar 

  12. TAO, F. M., ZHANG, M. H., and TANG, R. J. The interaction problem between the elastic line inclusions. Applied Mathematics and Mechanics (English Edition), 42(4) 847–852 (2002) https://doi.org/10.1007/BF02436205

    Google Scholar 

  13. KUSHCH, V. I., SHMEGERA, S. V., and BURYACHENKO, V. A. Interacting elliptic inclusions by the method of complex potentials. International Journal of Solids and Structures, 42 5491–5512 (2005)

    MATH  Google Scholar 

  14. NODA, N. A. and MATSUO, T. Singular integral equation method for interaction between elliptical inclusions. ASME Journal of Applied Mechanics, 65 310–319 (1998)

    Google Scholar 

  15. MOSCHOVIDIS, Z. A. and MURA, T. 2-ellipsoidal inhomogeneities by equivalent inclusion method. ASME Journal of Applied Mechanics, 42 847–852 (1975)

    MATH  Google Scholar 

  16. TANG, R. J., TAO, F. M., and ZHANG, M. H. Interaction between a rigid line inclusion and an elastic circular inclusion. Applied Mathematics and Mechanics (English Edition), 18(5) 441–448 (1997) https://doi.org/10.1007/BF02453739

    MathSciNet  MATH  Google Scholar 

  17. QIAO, L., HE, L. H., and DING, K. W. Axisymmetric buckling of an elastic plate containing a circular inclusion with dilative eigenstrain. ASME Journal of Applied Mechanics, 78 014503 (2011)

    Google Scholar 

  18. QIAO, L., HE, L. H., and NI, Y. Local-buckling-induced elastic interaction between inclusions in a free-standing film. International Journal of Solids and Structures, 50 3742–3747 (2013)

    Google Scholar 

  19. LEE, J. K. and JOHNSON, W. C. Calculation of elastic strain field of a cuboidal precipitate in an anisotropic matrix. Physica Status Solidi, 46 267–272 (1978)

    Google Scholar 

  20. JOHNSON, W. C. and LEE, J. K. Elastic interaction energy of two spherical precipitates in an anisotropic matrix. Metallurgical Transactions A, 10 1141–1149 (1979)

    Google Scholar 

  21. KHACHATURYAN, A. G. Theory of Structural Transformations in Solids, Wiley, New York (1983)

    Google Scholar 

  22. ARDELL, A. J., NICHOLSO, R. B., and ESHELBY, J. D. On modulated structure of aged Ni-Al alloys. Acta Metallurgica, 14 1295–1309 (1966)

    Google Scholar 

  23. LEE, J. K. and JOHNSON, W. C. Elastic strain-energy and interactions of thin square plates which have undergone a simple shear. Scripta Metallurgica, 11 477–484 (1977)

    Google Scholar 

  24. LEO, P. H., SHIELD, T. W., and BRUNO, O. P. Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metallurgica et Materialia, 41 2477–2485 (1993)

    Google Scholar 

  25. LIN, P. H., TOBUSHI, H., TANAKA, K., HATTORI, T., and MAKITA, M. Pseudoelastic behaviour of TiNi shape memory alloy subjected to strain variations. Journal of Intelligent Material Systems and Structures, 5 694–701 (1994)

    Google Scholar 

  26. ZHONG, Z., SUN, Q. P., and TONG, P. On the elastic axisymmetric deformation of a rod containing a single cylindrical inclusion. International Journal of Solids and Structures, 37 5943–5955 (2000)

    MATH  Google Scholar 

  27. ZHONG, Z. and SUN, Q. P. Analysis of a transversely isotropic rod containing a single cylindrical inclusion with axisymmetric eigenstrains. International Journal of Solids and Structures, 39 5753–5765 (2002)

    MATH  Google Scholar 

  28. ZHONG, Z., SUN, Q. P., and YU, X. B. Elastic solutions of a cylindrical rod containing periodically distributed inclusions with axisymmetric eigenstrains. Acta Mechanica, 166 169–183 (2003)

    MATH  Google Scholar 

  29. ROBINSON, R. D., SADTLER, B., DEMCHENKO, D. O., ERDONMEZ, C. K., WANG, L. W., and ALIVISATOS, A. P. Spontaneous superlattice formation in nanorods through partial cation exchange. Science, 317 355–358 (2007)

    Google Scholar 

  30. ZHANG, B., JUNG, Y., CHUNG, H. S., VAN VUGT, L., and AGARWAL, R. Nanowire transformation by size-dependent cation exchange reactions. Nano Letters, 10 149–155 (2010)

    Google Scholar 

  31. HUANG, C. W., CHEN, J. Y., CHIU, C. H., and WU, W. W. Revealing controllable nanowire transformation through cationic exchange for RRAM application. Nano Letters, 14 2759–2763 (2014)

    Google Scholar 

  32. FENTON, J. L., STEIMLE, B. C., and SCHAAK, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science, 360 513–517 (2018)

    Google Scholar 

  33. STEIMLE, B. C., FENTON, J. L., and SCHAAK, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science, 367 418–424 (2020)

    Google Scholar 

  34. LIN, Y. M. and DRESSELHAUS, M. S. Thermoelectric properties of superlattice nanowires. Physical Review B, 68 075304 (2003)

    Google Scholar 

  35. HU, M. and POULIKAKOS, D. Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Letters, 12 5487–5494 (2012)

    Google Scholar 

  36. DEMCHENKO, D. O., ROBINSON, R. D., SADTLER, B., ERDONMEZ, C. K., ALIVISATOS, A. P., and WANG, L. W. Formation mechanism and properties of CdS-Ag2S nanorod superlattices. ACS Nano, 2 627–636 (2008)

    Google Scholar 

  37. CAHN, J. W. and HILLIARD, J. E. Free energy of a nonuniform system, I: interfacial free energy. The Journal of Chemical Physics, 28 258–267 (1958)

    MATH  Google Scholar 

  38. BOYNE, A., DREGIA, S. A., and WANG, Y. Concurrent spinodal decomposition and surface roughening in thin solid films. Applied Physics Letters, 99 063111 (2011)

    Google Scholar 

  39. LU, Y. Y. and NI, Y. Effects of particle shape and concurrent plasticity on stress generation during lithiation in particulate Li-ion battery electrodes. Mechanics of Materials, 91 372–381 (2015)

    Google Scholar 

  40. WANG, Y. U., JIN, Y. M., and KHACHATURYAN, A. G. Phase field microelasticity theory and modeling of elastically and structurally inhomogeneous solid. Journal of Applied Physics, 92 1351–1360 (2002)

    Google Scholar 

  41. CHANG, L. G., LU, Y. Y., HE, L. H., and NI, Y. Phase field model for two-phase lithiation in an arbitrarily shaped elastoplastic electrode particle under galvanostatic and potentiostatic operations. International Journal of Solids and Structures, 143 73–83 (2018)

    Google Scholar 

  42. CUI, Z. W., GAO, F., CUI, Z. H., and QU, J. M. A. Second nearest-neighbor embedded atom method interatomic potential for Li-Si alloys. Journal of Power Sources, 207 150–159 (2012a)

    Google Scholar 

  43. ZHANG, X. C., SHYY, W., and MARIE SASTRY, A. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. Journal of The Electrochemical Society, 154 A910–A916 (2007)

    Google Scholar 

  44. CUI, Z. W., GAO, F., and QU, J. M. A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. Journal of the Mechanics and Physics of Solids, 60 1280–1295 (2012)

    MathSciNet  Google Scholar 

  45. YANG, W. Z., LIU, Q. C., YUE, Z. F., LI, X. D., and XU, B. X. Rotation of hard particles in a soft matrix. Journal of the Mechanics and Physics of Solids, 101 285–310 (2017)

    MathSciNet  Google Scholar 

  46. WU, Y. Y., FAN, R., and YANG, P. D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Letters, 2 83–86 (2002)

    Google Scholar 

  47. NICEWARNER-PENA, S. R., FREEMAN, R. G., REISS, B. D., HE, L., PENA, D. J., WALTON, I. D., CROMER, R., KEATING, C. D., and NATAN, M. J. Submicrometer metallic barcodes. Science, 294 137–141 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ni.

Additional information

Citation: YANG, Y. and NI, Y. Elastic interaction between inclusions and tunable periodicity of superlattice structure in nanowires. Applied Mathematics and Mechanics (English Edition) 41(10), 1461—1478 (2020) https://doi.org/10.1007/s10483-020-2654-6

Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB22040502), the National Natural Science Foundation of China (No. 11672285), and the Fundamental Research Funds for the Central Universities of China (No. WK2090050043)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ni, Y. Elastic interaction between inclusions and tunable periodicity of superlattice structure in nanowires. Appl. Math. Mech.-Engl. Ed. 41, 1461–1478 (2020). https://doi.org/10.1007/s10483-020-2654-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2654-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation