Skip to main content
Log in

Jacobian-free Newton-Krylov subspace method with wavelet-based preconditioner for analysis of transient elastohydrodynamic lubrication problems with surface asperities

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an investigation into the effect of surface asperities on the over-rolling of bearing surfaces in transient elastohydrodynamic lubrication (EHL) line contact. The governing equations are discretized by the finite difference method. The resulting nonlinear system of algebraic equations is solved by the Jacobian-free Newton-generalized minimal residual (GMRES) from the Krylov subspace method (KSM). Acceleration of the GMRES iteration is accomplished by a wavelet-based preconditioner. Profiles of the lubricant pressure and film thickness are obtained at each time step when the indented surface moves through the contact region. The prediction of pressure as a function of time provides an insight into the understanding of fatigue life of bearings. The analysis confirms the need for the time-dependent approach of EHL problems with surface asperities. This method requires less storage and yields an accurate solution with much coarser grids. It is stable, efficient, allows a larger time step, and covers a wide range of parameters of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

amplitude of roughness, µm

a 0 :

dimensionless amplitude of roughness, a0 = aR/b2

\(\overline a\) :

normalized surface roughness amplitude, \(\overline a = {a_0}/H_{\min}^{{\rm{Dowson - Higginson}}};\)

b :

half width of Hertzian contact, \(b = 4R\sqrt {W/\left({2\pi} \right),{\rm{m}}} \)

E′ :

reduced modulus of elasticity, Pa

G :

dimensionless material parameter, G = αE′

H :

dimensionless film thickness, H = hR/b2

h :

film thickness, m

\(\overline h \) :

dimensionless film thickness, \(\overline h = h/\left({R{{\left({2U} \right)}^{- 1/2}}} \right)\)

H 00 :

dimensionless offset film thickness, m

K ij :

discrete approximation of K-logarithmic kernel

λ :

dimensionless velocity parameter

l :

dimensionless wavelength, l = λ/b

N :

number of nodes on the grid

P :

dimensionless pressure, P = p/ph

p :

pressure, Pa

α :

pressure viscosity relation

Δx :

dimensionless mesh size

Δt :

dimensionless time step

p h :

maximum Hertzian pressure, ph = E′b/(4R), Pa

R :

reduced radius of curvature, m

U :

dimensionless speed parameter, U = (η0us)/(E′R)

u s :

average rolling velocity, us = u1 + u2, m/s

u1, u2 :

velocities of lower and upper surfaces, respectively, m/s

W :

dimensionless load parameter, w/(E′R)

w :

external load per unit length, N/m

XC :

dimensionless location of a pressure spike

X :

dimensionless coordinate, x/b;

z :

pressure viscosity index

η :

Newtonian viscosity

η 0 :

viscosity at ambient pressure

\(\overline \eta \) :

dimensionless viscosity, \(\overline \eta = \eta /\eta 0\)

M :

dimensionless load parameter (Moes parameter)

L :

dimensionless material parameter (Moes parameter).

References

  1. DOWSON, D. and HIGGINSON, G. R. Elasto-Hydrodynamic Lubrication, 2nd ed., Pergaman Press, New York (1977)

    MATH  Google Scholar 

  2. DOWSON, D. and EHRET, P. Past, present and future studies in elastohydrodynamics. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 213(5), 317–333 (1999)

    Article  Google Scholar 

  3. SPIKES, H. A. Sixty years of EHL. Lubrication Science, 18(4), 265–291 (2006)

    Article  Google Scholar 

  4. LUGT, P. M. and MORALES-ESPEJEL, G. E. A review of elasto-hydrodynamic lubrication theory. Tribology Transactions, 54, 470–496 (2011)

    Article  Google Scholar 

  5. VENNER, C. H. Multilevel Solution of the EHL Line and Point Contact Problems, Ph. D. dissertation, University of Twente (1991)

  6. GOODYER, C. E. Adaptive Numerical Methods for Elastohydrodynamic Lubrication, Ph. D. dissertation, University of Leeds (2001)

  7. PETRUSEVICH, A. I. Fundamental conclusions from the contact hydrodynamic theory of lubrication. Izvestiya Akademii Nauk SSSR (OTN), 2, 209–223 (1951)

    Google Scholar 

  8. DOWSON, D., HIGGINSON, G. R., and WHITAKER, A. V. Stress distribution in lubricated rolling contacts. Proceedings of the Institution of Mechanical Engineers Symposium on Fatigue in Rolling Contacts, 6, 66–75 (1963)

    Google Scholar 

  9. BOOKER, J. Dynamically loaded journal bearings: mobility method of solution. Journal of Basic Engineering, 87(3), 537–546 (1965)

    Article  Google Scholar 

  10. DOWSON, D., TAYLOR, C. M., and ZHU, G. A transient elastohydrodynamic lubrication analysis of a cam and follower. Journal of Physics D: Applied Physics, 25(1A), 313–320 (1992)

    Article  Google Scholar 

  11. VICHARD, J. P. Transient effects in the lubrication of Hertzian contacts. Journal of Mechanical Engineering Science, 13(3), 173–189 (1971)

    Article  Google Scholar 

  12. TRIPP, J. H. and HAMROCK, B. J. Surface roughness effects in EHL contacts. Proceedings of the Leeds-Lyon Symposium on Tribology, The University of Leeds, Leeds, 30–39 (1984)

    Google Scholar 

  13. WEDEVEN, L. D. and CUSANO, C. Elastohydrodynamic film thickness measurements of artificially produced surface dents and grooves. ASLE Transactions, 22(4), 369–381 (1979)

    Article  Google Scholar 

  14. KANETA, M., KANADA, T., and NISHIKAWA, H. Optical interferometric observations of the effects of a moving dent on point contact EHL. Tribology Series, 32, 69–79 (1997)

    Article  Google Scholar 

  15. CHAOMLEFFEL, J. P., DALMAZ, G., and VERGNE, P. Experimental results and analytical predictions of EHL film thickness. Tribology International, 40, 1543–1552 (2007)

    Article  Google Scholar 

  16. ZHANG, Y., WANG, W., ZHANG, S., and ZHAO, Z. Experimental study of EHL film thickness behaviour at high speed in ball-on-ring contacts. Tribology International, 113, 216–223 (2017)

    Article  Google Scholar 

  17. GOGLIA, P. R., CUSANO, C., and CONRY, T. F. The effects of surface irregularities on the elastohydrodynamic lubrication of sliding line contacts, part II: wavy surface. Journal of Tribology, 106(1), 113–119 (1984)

    Article  Google Scholar 

  18. KWEH, C. C., EVANS, H. P., and SNIDLE, R. W. Micro-elastohydrodynamic lubrication of an elliptical contact with transverse and three-dimensional sinusoidal roughness. Journal of Tribology, 111(4), 577–584 (1989)

    Article  Google Scholar 

  19. LEE, R. T. and HAMROCK, B. J. A circular nonNewtonian fluid model, part II: used in microelastohydrodynamic lubrication. Journal of Tribology, 112(3), 497–505 (1990)

    Article  Google Scholar 

  20. VENNER, C. H., LUBRECHT, A. A., and TEN-NAPEL, W. E. Numerical simulation of the overrolling of a surface feature in an EHL line contact. Journal of Tribology, 113(4), 777–783 (1991)

    Article  Google Scholar 

  21. HUGHES, T. G., ELCOATE, C. D., and EVANS, H. P. Coupled solution of the elastohydrodynamic line contact problem using a differential deflection method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214(4), 585–598 (2000)

    Google Scholar 

  22. AHMED, S., GOODYER, C. E., and JIMACK, P. K. An efficient preconditioned iterative solution of fully-coupled elastohydrodynamic lubrication problems. Applied Numerical Mathematics, 62(5), 649–663 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. HABCHI, W. and ISSA, J. S. An exact and general model order reduction technique for the finite element solution of elastohydrodynamic lubrication problems. Journal of Tribology, 139(5), 051501 (2017)

    Article  Google Scholar 

  24. MAIER, D., HAGER, C., HETZLER, H., FILLOT, N., VERGNE, P., DUREISSEIX, D., and SEEMANN, W. A nonlinear model order reduction approach to the elastohydrodynamic problem. Tribology International, 82, 484–492 (2015)

    Article  Google Scholar 

  25. BUJURKE, N. M., KANTLI, M. H., and SHETTAR, B. M. Wavelet preconditioned Newton-Krylov method for elastohydrodynamic lubrication of line contact problems. Applied Mathematical Modelling, 46, 285–298 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. LIESEN, J. and STRAKOS, Z. Krylov Subspace Methods: Principles and Analysis, Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  27. ALMQVIST, T. and LARSSON, R. Thermal transient rough EHL line contact simulations by aid of computational fluid dynamics. Tribology International, 41, 683–693 (2008)

    Article  Google Scholar 

  28. ALMQVIST, T., ALMQVIST, A., and LARSSON, R. A comparison between computational fluid dynamic and Reynolds approaches for simulating transient EHL line contacts. Tribology International, 37, 61–69 (2004)

    Article  Google Scholar 

  29. HAJISHAFIEE, A., KADIRIC, A., IOANNIDES, S., and DINI, D. A coupled finite-volume CFD solver for two-dimensional elasto-hydrodynamic lubrication problems with particular application to rolling element bearings. Tribology International, 109, 258–273 (2017)

    Article  Google Scholar 

  30. TOSIC, M., LARSSON, R., JOVANOVIC, J., LOHNER, T., BJORLING, M., and STAHL, K. A computational fluid dynamics study on shearing mechanisms in thermal elastohydrodynamic line contacts. Lubricants, 7(8), 69 (2019)

    Article  Google Scholar 

  31. HARTINGER, M. and REDDYHOFF, T. CFD modeling compared to temperature and friction measurements of an EHL line contact. Tribology International, 126, 144–152 (2018)

    Article  Google Scholar 

  32. SAAD, Y. Iterative Methods for Sparse Linear Systems, 2nd ed., Society for Industrial and Applied Mathematics, Philadelphia, PA (2003)

    Book  MATH  Google Scholar 

  33. CHEN, K. Matrix Preconditioning Techniques and Applications, Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  34. HOUSEHOLDER, A. S. and BAUER, F. L. On certain methods for expanding the characteristic polynomial. Numerische Mathematik, 1, 29–37 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  35. HESTENES, M. R. and STIEFEL, E. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6), 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  36. REID, J. K. On the method of conjugate gradients for the solution of large sparse systems of linear equations. Proceeding, Conference on Large Sparse Sets of Linear Equations, Academic Press, New York, 231–254 (1971)

    Google Scholar 

  37. PAIGE, C. C. and SAUNDERS, M. A. Solution of sparse indefinite systems of linear equations. SIAM Journal of Numerical Analysis, 12(4), 617–629 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  38. SAAD, Y. and SCHULTZ, M. H. GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. WALKER, H. F. Implementation of the GMRES method using Householder transformations. SIAM Journal on Scientific and Statistical Computing, 9(1), 152–163 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. DRKOSOVA, J., GREENBAUM, A., ROZLOZNIK, M., and STRAKOS, Z. Numerical stability of GMRES. BIT Numerical Mathematics, 35, 309–330 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. PAIGE, C. C., ROZLOZNIK, M., and STRAKOS, Z. Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM Journal on Matrix Analysis and Applications, 28(1), 264–284 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. BARRETT, R., BERRY, M., CHAN, T. F., DEMMEL, J., DONATO, J. M., DONGARRA, J., EIJKHOUT, V., POZO, R., ROMINE, C., and VAN-DER-VORST, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Society for Industrial and Applied Mathematics, Philadelphia, PA (1994)

    Book  MATH  Google Scholar 

  43. SIMONCINI, V. and SZYLD, D. B. Recent computational developments in Krylov subspace methods for linear systems. Numerical Linear Algebra with Applications, 14(1), 1–59 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. KNOLL, D. A. and KEYES, D. E. Jacobian-free Newton-Krylov methods: a survey of approaches and applications. Journal of Computational Physics, 193(2), 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. FORD, J. M. Wavelet-Based Preconditioning of Dense Linear Systems, Ph. D. dissertation, University of Liverpool (2001)

  46. KELLEY, C. T. Iterative Methods for Linear and Nonlinear Equations, Society for Industrial and Applied Mathematics, Philadelphia, PA (1995)

    Book  MATH  Google Scholar 

  47. SRIRATTAYAWONG, S. and GAO, S. A computational fluid dynamics study of elastohydrodynamic lubrication line contact problem with consideration of surface roughness. Computational Thermal Sciences: An International Journal, 5(5), 195–213 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for their useful suggestions for the earlier draft of the article. N. M. BUJURKE acknowledges the financial support from the Indian National Science Academy, New Delhi, India. M. H. KANTLI would like to thank Biluru Gurubasava Mahaswamiji Institute of Technology for the encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Bujurke.

Additional information

Citation: BUJURKE, N. M. and KANTLI, M. H. Jacobian-free Newton-Krylov subspace method with wavelet-based preconditioner for analysis of transient elastohydrodynamic lubrication problems with surface asperities. Applied Mathematics and Mechanics (English Edition), 41(6), 881–898 (2020) https://doi.org/10.1007/s10483-020-2616-8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bujurke, N.M., Kantli, M.H. Jacobian-free Newton-Krylov subspace method with wavelet-based preconditioner for analysis of transient elastohydrodynamic lubrication problems with surface asperities. Appl. Math. Mech.-Engl. Ed. 41, 881–898 (2020). https://doi.org/10.1007/s10483-020-2616-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2616-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation