Skip to main content
Log in

Darcy-Forchheimer flow by rotating disk with partial slip

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The viscous dissipation and heat transfer in the Darcy-Forchheimer flow by a rotating disk are examined. The partial slip conditions are invoked. The optimal series solutions are computed via the optimal homotopic analysis method (OHAM). The thermophoresis and Brownian motions are studied. The Darcy-Forchheimer relation characterizes the porous space. The roles of influential variables on the physical quantities are graphically examined. A reduction in the local Nusselt number is observed through thermophoresis and thermal slip parameters. The local Sherwood number depicts an increasing trend for the higher Brownian motion and concentration slip parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u, v, w :

velocity components

υ nf :

kinematic nanofluid viscosity

r, ϕ, z :

polar coordinates

K*:

permeability of porous space

μ f :

dynamic viscosity of fluid

υ f :

kinematic viscosity of fluid

ρ f :

density of base fluid

α m :

thermal diffusivity

Cb*:

drag coefficient

F :

non-uniform inertia coefficient

ρ nf :

nanofluid density

D B :

Brownian diffusion

(ρcp)f :

specific heat capacity of base fluid

D T :

thermophoresis diffusion

Ω :

angular frequency

L 1 :

velocity slip parameter

L 2 :

thermal slip parameter

L 3 :

concentration slip parameter

T w :

surface temperature

C w :

surface concentration

T :

ambient temperature

C :

ambient concentration

λ :

local porosity parameter

F r :

Forchheimer number

N t :

thermophoresis parameter

Sc :

Schmidt number

γ 1 :

dimensionless velocity slip parameter

Pr :

Prandtl number

N b :

Brownian motion parameter

Ec :

Eckert number

References

  1. CHOI, S. U. S. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposition, 66, 99–105 (1995)

    Google Scholar 

  2. EASTMAN, J. A., CHOI, S. U. S., LI, S., YU, W., and THOMPSON, L. J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78, 718–720 (2001)

    Google Scholar 

  3. BUONGIORNO, J. Convective transport in nanofluids. ASME Journal of Heat Transfer, 128, 240–250 (2006)

    Google Scholar 

  4. TIWARI, R. K. and DAS, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluid. International Journal of Heat and Mass Transfer, 50, 2002–2018 (2007)

    MATH  Google Scholar 

  5. ABU-NADA, E. and OZTOP, H. F. Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. International Journal of Heat and Fluid Flow, 30, 669–678 (2009)

    Google Scholar 

  6. HSIAO, K. L. Nanofluid flow with multimedia physical features for conjugate mixed convection and radiation. Computers and Fluids, 104, 1–8 (2014)

    MathSciNet  MATH  Google Scholar 

  7. HSIAO, K. L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Applied Thermal Engineering, 98, 850–861 (2016)

    Google Scholar 

  8. SHEHZAD, N., ZEESHAN, A., ELLAHI, R., and VAFAI, K. Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. Journal of Molecular Liquids, 222, 446–455 (2016)

    Google Scholar 

  9. MAHANTHESH, B., MABOOD, F., GIREESHA, B. J., and GORLA, R. S. R. Effects of chemical reaction and partial slip on the three-dimensional flow of a nanofluid impinging on an exponentially stretching surface. European Physical Journal Plus, 132, 113 (2017)

    Google Scholar 

  10. FAROOQ, M., JAVED, M., KHAN, M. I., ANJUM, A., and HAYAT, T. Melting heat transfer and double stratification in stagnation flow of viscous nanofluid. Results in Physics, 7, 2296–2301 (2017)

    Google Scholar 

  11. KUMAR, K. G., RAMESH, G. K., GIREESHA, B. J., and GORLA, R. S. R. Characteristics of Joule heating and viscous dissipation on three-dimensional flow of Oldroyd B nanofluid with thermal radiation. Alexandria Engineering Journal, 57, 2139–2149 (2018)

    Google Scholar 

  12. HAYAT, T., RASHID,M., ALSAEDI, A., and AHMAD, B. Flow of nanofluid by nonlinear stretching velocity. Results in Physics, 8, 1104–1109 (2018)

    Google Scholar 

  13. USMAN, M., SOOMRO, F. A., HAQ, R. U., WANG, W., and DEFTERLI, O. Thermal and velocity slip effects on Casson nanofluid flow over an inclined permeable stretching cylinder via collocation method. International Journal of Heat and Mass Transfer, 122, 1255–1263 (2018)

    Google Scholar 

  14. IMTIAZ, M., SHAHID, F., HAYAT, T., and ALSAEDI, A. Melting heat transfer in Cu-water and Ag-water nanofluids flow with homogeneous-heterogeneous reactions. Applied Mathematics and Mechanics (English Edition), 40(4), 465–480 (2019) https://doi.org/10.1007/s10483-019-2462-8

    MathSciNet  MATH  Google Scholar 

  15. PRAKASH, J., TRIPATHI, D., TIWARI, A. K., SAIT, S. M., and ELLAHI, R. Peristaltic pumping of nanofluids through tapered channel in porous environment: applications in blood flow. Symmetry, 11, 868 (2019)

    Google Scholar 

  16. SARAFRAZ, M. M., POURMEHRANA, O., YANGA, B., ARJOMANDIA, M., and ELLAHI, R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. International Journal of Thermal Sciences, 147, 106131 (2020)

    Google Scholar 

  17. NIAZI, M. D. K. and XU, H. Modelling two-layer nanofluid flow in a micro-channel with electroosmotic effects by means of Buongiorno’s model. Applied Mathematics and Mechanics (English Edition), 41(1), 83–104 (2020) https://doi.org/10.1007/s10483-020-2558-7

    Google Scholar 

  18. FORCHHEIMER, P. Wasserbewegung durch boden. Zeitschrift des Vereins Deutscher Ingenieure, 45, 1781–1788 (1901)

    Google Scholar 

  19. MUSKAT, M. The Flow of Homogeneous Fluids Through Porous Media, Edwards, MI (1946)

    Google Scholar 

  20. SEDDEEK, M. A. Influence of viscous dissipation and thermophoresis on Darcy-Forchheimer mixed convection in a fluid saturated porous media. Journal of Colloid and Interface Science, 293, 137–142 (2006)

    Google Scholar 

  21. SADIQ, M. A. and HAYAT, T. Darcy-Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet. Results in Physics, 6, 884–890 (2016)

    Google Scholar 

  22. BAKAR, S. A., ARIFIN, N. M., NAZAR, R., ALI, F. M., and POP, I. Forced convection boundary layer stagnation-point flow in Darcy-Forchheimer porous medium past a shrinking sheet. Frontiers in Heat and Mass Transfer, 7, 38 (2016)

    Google Scholar 

  23. UMAVATHI, J. C., OJJELA, O., and VAJRAVELU, K. Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy-Forchheimer-Brinkman model. International Journal of Thermal Sciences, 111, 511–524 (2017)

    Google Scholar 

  24. HAYAT, T., NAZAR, H., IMTIAZ, M., and ALSAEDI, A. Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks. Applied Mathematics and Mechanics (English Edition), 38(12), 1663–1678 (2017) https://doi.org/10.1007/s10483-017-2289-8

    MathSciNet  MATH  Google Scholar 

  25. HAYAT, T., AZIZ, A., MUHAMMAD, T., and ALSAEDI, A. An optimal analysis for Darcy-Forchheimer 3D flow of nanofluid with convective condition and homogeneous-heterogeneous reactions. Physics Letterrs A, 382, 2846–2855 (2018)

    MathSciNet  Google Scholar 

  26. HAYAT, T., HAIDER, F., MUHAMMAD, T., and ALSAEDI, A. Darcy-Forchheimer squeezed flow of carbon nanotubes with thermal radiation. Journal of Physics and Chemistry of Solids, 120, 79–86 (2018)

    Google Scholar 

  27. ULLAH, M. Z., ALSHOMRANI, A. S., and ALGHAMDI, M. Significance of Arrhenius activation energy in Darcy-Forchheimer 3D rotating flow of nanofluid with radiative heat transfer. Physica A: Statistical Mechanics and Its Applications, 124024 (2019) https://doi.org/10.1016/j.physa.2019.124024

  28. FANG, T. G. and WANG, F. J. Momentum and heat transfer of a special case of the unsteady stagnation-point flow. Applied Mathematics and Mechanics (English Edition), 41(1), 51–82 (2020) https://doi.org/10.1007/s10483-020-2556-9

    Google Scholar 

  29. SAIF, R. S., MUHAMMAD, T., and SADIA, H. Significance of inclined magnetic field in Darcy-Forchheimer flow with variable porosity and thermal conductivity. Physica A: Statistical Mechanics and its Applications, 124067 (2020) https://doi.org/10.1016/j.physa.2019.124067

    Google Scholar 

  30. VON KÁRMÁN, T. V. Über laminare and turbulente reibung. Zeitschrift für Angewandte Mathematik und Mechanik, 1, 233–252 (1921)

    MATH  Google Scholar 

  31. TURKYILMAZOGLU, M. and SENEL, P. Heat and mass transfer of the flow due to a rotating rough and porous disk. International Journal of Thermal Sciences, 63, 146–158 (2013)

    Google Scholar 

  32. RASHIDI, M. M., KAVYANI, N., and ABELMAN, S. Investigation of entropy generation in MHD and slip flow over rotating porous disk with variable properties. International Journal of Heat and Mass Transfer, 70, 892–917 (2014)

    Google Scholar 

  33. TURKYILMAZOGLU, M. Nanofluid flow and heat transfer due to a rotating disk. Computers and Fluids, 94, 139–146 (2014)

    MathSciNet  MATH  Google Scholar 

  34. HATAMI, M., SHEIKHOLESLAMI, M., and GANJI, D. D. Laminar flow and heat transfer of nanofluids between contracting and rotating disks by least square method. Powder Technology, 253, 769–779 (2014)

    Google Scholar 

  35. MUSTAFA, M., KHAN, J. A., HAYAT, T., and ALSAEDI, A. On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk. Journal of Molecular Liquids, 211, 119–125 (2015)

    Google Scholar 

  36. SHEIKHOLESLAMI, M., HATAMI, M., and GANJI, D. D. Numerical investigation of nanofluid spraying on an inclined rotating disk for cooling process. Journal of Molecular Liquids, 211, 577–583 (2015)

    Google Scholar 

  37. DOH, D. H. and MUTHTAMILSELVAN, M. Thermophoretic particle deposition on magnetohydrodynamic flow of micropolar fluid due to a rotating disk. International Journal of Mechanical Sciences, 130, 350–359 (2017)

    Google Scholar 

  38. QAYYUM, S., IMTIAZ, M., ALSAEDI, A., and HAYAT, T. Analysis of radiation in a suspension of nanoparticles and gyrotactic microorganism for rotating disk of variable thickness. Chinese Journal of Physics, 56, 2404–2423 (2018)

    Google Scholar 

  39. XU, H. Modelling unsteady mixed convection of a nanofluid suspended with multiple kinds of nanoparticles between two rotating disks by generalized hybrid model. International Communications in Heat and Mass Transfer, 108, 104275 (2019)

    Google Scholar 

  40. MAJEED, A. H., BILAL, S., MAHMOOD, R., and MALIK, M. Y. Heat transfer analysis of viscous fluid flow between two coaxially rotated disks embedded in permeable media by capitalizing non-Fourier heat flux model. Phyisca A: Statistical Mechanics and Its Applications, 540, 123182 (2020)

    MathSciNet  Google Scholar 

  41. LIAO, S. J. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15, 2003–2016 (2010)

    MathSciNet  MATH  Google Scholar 

  42. MALVANDI, A., HEDAYATI, F., and DOMAIRRY, G. Stagnation point flow of a nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. Journal of Thermodynamics, 2013, 764827 (2013)

    Google Scholar 

  43. ABBASBANDY, S., HAYAT, T., ALSAEDI, A., and RASHIDI, M. M. Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 24, 390–401 (2014)

    MathSciNet  MATH  Google Scholar 

  44. TURKYILMAZOGLU, M. An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat, 30, 1633–1650 (2016)

    MathSciNet  MATH  Google Scholar 

  45. AWAIS, M., SALEEM, S., HAYAT, T., and IRUM, S. Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis. Acta Astronautica, 129, 271–276 (2016)

    Google Scholar 

  46. HAQ, R. U., HAMOUCH, Z., HUSSAIN, S. T., and MEKKAOUI, T. MHD mixed convection flow along a vertically heated sheet. International Journal of Hydrogen Energy, 42, 15925–15932 (2017)

    Google Scholar 

  47. AWAIS, M., AWAN, S. E., IQBAL, K., KHAN, Z. A., and RAJA, M. A. Z. Hydromagnetic mixed convective flow over a wall with variable thickness and Cattaneo-Christov heat flux model: OHAM analysis. Results in Physics, 8, 621–627 (2018)

    Google Scholar 

  48. GUPTA, S., KUMAR, D., and SINGH, J. MHD mixed convective stagnation point flow and heat transfer of an incompressible nanofluid over an inclined stretching sheet with chemical reaction and radiation. International Journal of Heat and Mass Transfer, 118, 378–387 (2018)

    Google Scholar 

  49. ULLAH, I., RAHIM, M. T., KHAN, H., and QAYYUM, M. Analysis of various semi-numerical schemes for magnetohydrodynamic (MHD) squeezing fluid flow in porous medium. Propulsion and Power Research, 8, 69–78 (2019)

    Google Scholar 

  50. NAZ, R., TARIQ, S., and ALSULAMI, H. Inquiry of entropy generation in stratified Walters’ B nanofluid with swimming gyrotactic microorganisms. Alexandria Engineering Journal, 59, 247–261 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Haider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Haider, F., Muhammad, T. et al. Darcy-Forchheimer flow by rotating disk with partial slip. Appl. Math. Mech.-Engl. Ed. 41, 741–752 (2020). https://doi.org/10.1007/s10483-020-2608-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2608-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation