Skip to main content
Log in

Chebyshev spectral variational integrator and applications

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The Chebyshev spectral variational integrator (CSVI) is presented in this paper. Spectral methods have aroused great interest in approximating numerically a smooth problem for their attractive geometric convergence rates. The geometric numerical methods are praised for their excellent long-time geometric structure-preserving properties. According to the generalized Galerkin framework, we combine two methods together to construct a variational integrator, which captures the merits of both methods. Since the interpolating points of the variational integrator are chosen as the Chebyshev points, the integration of Lagrangian can be approximated by the Clenshaw-Curtis quadrature rule, and the barycentric Lagrange interpolation is presented to substitute for the classic Lagrange interpolation in the approximation of configuration variables and the corresponding derivatives. The numerical float errors of the first-order spectral differentiation matrix can be alleviated by using a trigonometric identity especially when the number of Chebyshev points is large. Furthermore, the spectral variational integrator (SVI) constructed by the Gauss-Legendre quadrature rule and the multi-interval spectral method are carried out to compare with the CSVI, and the interesting kink phenomena for the Clenshaw-Curtis quadrature rule are discovered. The numerical results reveal that the CSVI has an advantage on the computing time over the whole progress and a higher accuracy than the SVI before the kink position. The effectiveness of the proposed method is demonstrated and verified perfectly through the numerical simulations for several classical mechanics examples and the orbital propagation for the planet systems and the Solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FENG, K. and QIN, M. Z. Symplectic Geometric Algorithms for Hamiltonian Systems, Springer, Berlin (2010)

    Book  Google Scholar 

  2. MARSDEN, J. E. and WEST, M. Discrete mechanics and variational integrators. Acta Numerica, 10, 357–514 (2001)

    Article  MathSciNet  Google Scholar 

  3. LEOK, M. and SHINGEL, T. General techniques for constructing variational integrators. Frontiers of Mathematics in China, 7(2), 273–303 (2012)

    Article  MathSciNet  Google Scholar 

  4. OBER-BLÖBAUM, S. and SAAKE, N. Construction and analysis of higher order Galerkin variational integrators. Advances in Computational Mathematics, 41(6), 955–986 (2015)

    Article  MathSciNet  Google Scholar 

  5. LEOK, M. Generalized Galerkin variational integrators. arXiv, 0508360 (2005) https://arxiv.org/abs/math/0508360

  6. LEE, T., LEOK, M., and MCCLAMROCH, N. H. Lie group variational integrators for the full body problem in orbital mechanics. Celestial Mechanics and Dynamical Astronomy, 98(2), 121–144 (2007)

    Article  MathSciNet  Google Scholar 

  7. PALACIOS, L. and GURFIL, P. Variational and symplectic integrators for satellite relative orbit propagation including drag. Celestial Mechanics and Dynamical Astronomy, 130(4), 31 (2018)

    Article  MathSciNet  Google Scholar 

  8. OBER-BLÖBAUM, S., JUNGE, O., and MARSDEN, J. E. Discrete mechanics and optimal control: an analysis. ESAIM: Control, Optimisation and Calculus of Variations, 17(2), 322–352 (2011)

    MathSciNet  MATH  Google Scholar 

  9. KOBILAROV, M. B. and MARSDEN, J. E. Discrete geometric optimal control on Lie groups. IEEE Transactions on Robotics, 27(4), 641–655 (2011)

    Article  Google Scholar 

  10. MOORE, A., OBER-BLÖBAUM, S., and MARSDEN, J. E. Trajectory design combining invariant manifolds with discrete mechanics and optimal control. Journal of Guidance, Control, and Dynamics, 35(5), 1507–1525 (2012)

    Article  Google Scholar 

  11. BOLATTI, D. A. and DE RUITER, A. H. Galerkin variational integrators for orbit propagation with applications to small bodies. Journal of Guidance, Control, and Dynamics, 42(2), 347–363 (2018)

    Article  Google Scholar 

  12. HALL, J. and LEOK, M. Lie group spectral variational integrators. Foundations of Computational Mathematics, 17(1), 199–257 (2017)

    Article  MathSciNet  Google Scholar 

  13. HE, L., WU, H. B., and MEI, F. X. Variational integrators for fractional Birkhoffian systems. Nonlinear Dynamics, 87(4), 2325–2334 (2017)

    Article  Google Scholar 

  14. TREFETHEN, L. N. Spectral Methods in MATLAB, Society of Industrial and Applied Mathematics, Philadelphia (2000)

    Book  Google Scholar 

  15. BOYD, J. P. Chebyshev and Fourier Spectral Methods, 2nd ed., Dover Publications, Inc., New York (2001)

    MATH  Google Scholar 

  16. SHEN, J., TANG, T., and WANG, L. L. Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin (2011)

    Book  Google Scholar 

  17. HALE, N. and TREFETHEN, L. N. Chebfun and numerical quadrature. Science China Mathematics, 55(9), 1749–1760 (2012)

    Article  MathSciNet  Google Scholar 

  18. DRISCOLL, T. A., HALE, N., and TREFETHEN, L. N. Chebfun Guide, Pafnuty Publications, Oxford (2014)

    Google Scholar 

  19. JIAO, Y. J. and GUO, B. Y. Mixed spectral method for exterior problems of Navier-Stokes equations by using generalized Laguerre functions. Applied Mathematics and Mechanics (English Edition), 30(5), 561–574 (2009) https://doi.org/10.1007/s10483-009-0503-z

    Article  MathSciNet  Google Scholar 

  20. LI, B. and CHEN, S. Direct spectral domain decomposition method for 2D incompressible Navier-Stokes equations. Applied Mathematics and Mechanics (English Edition), 36(8), 1073–1090 (2015) https://doi.org/10.1007/s10483-015-1964-7

    Article  MathSciNet  Google Scholar 

  21. GONG, Q., ROSS, I. M., and FAHROO, F. Costate computation by a Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 33(2), 623–628 (2010)

    Article  Google Scholar 

  22. GE, X. S., YI, Z. G., and CHEN, L. Q. Optimal control of attitude for coupled-rigid-body spacecraft via Chebyshev-Gauss pseudospectral method. Applied Mathematics and Mechanics (English Edition), 38(9), 1257–1272 (2017) https://doi.org/10.1007/s10483-017-2236-8

    Article  MathSciNet  Google Scholar 

  23. YI, Z. G. and GE, X. S. Attitude maneuver of dual rigid bodies spacecraft using ftp-adaptive pseudo-spectral method. International Journal of Aeronautical and Space Sciences, 20(1), 214–227 (2019)

    Article  MathSciNet  Google Scholar 

  24. HALL, J. and LEOK, M. Spectral variational integrators. Numerische Mathematik, 130(4), 681–740 (2015)

    Article  MathSciNet  Google Scholar 

  25. TREFETHEN, L. N. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Review, 50(1), 67–87 (2008)

    Article  MathSciNet  Google Scholar 

  26. BERRUT, J. P. and TREFETHEN, L. N. Barycentric Lagrange interpolation. SIAM Review, 46(3), 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  27. LI, Y. Q., WU, B. Y., and LEOK, M. Construction and comparison of multidimensional spectral variational integrators and spectral collocation methods. Applied Numerical Mathematics, 132, 35–50 (2018)

    Article  MathSciNet  Google Scholar 

  28. LI, Y. Q., WU, B. Y., and LEOK, M. Spectral-collocation variational integrators. Journal of Computational Physics, 332, 83–98 (2017)

    Article  MathSciNet  Google Scholar 

  29. LIU, W. J., WU, B. Y., and SUN, J. Some numerical algorithms for solving the highly oscillatory second-order initial value problems. Journal of Computational Physics, 276, 235–251 (2014)

    Article  MathSciNet  Google Scholar 

  30. WEIDEMAN, J. A. C. and TREFETHEN, L. N. The kink phenomenon in Fejér and Clenshaw-Curtis quadrature. Numerische Mathematik, 107(4), 707–727 (2007)

    Article  MathSciNet  Google Scholar 

  31. SOMMARIVA, A. Fast construction of Fejér and Clenshaw-Curtis rules for general weight functions. Computers & Mathematics with Applications, 65(4), 682–693 (2013)

    Article  MathSciNet  Google Scholar 

  32. WALDVOGEL, J. Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT Numerical Mathematics, 46(1), 195–202 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baozeng Yue.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11472041, 11532002, 11772049, and 11802320)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Yue, B. & Deng, M. Chebyshev spectral variational integrator and applications. Appl. Math. Mech.-Engl. Ed. 41, 753–768 (2020). https://doi.org/10.1007/s10483-020-2602-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2602-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation