Skip to main content
Log in

Interaction effects of DNA, RNA-polymerase, and cellular fluid on the local dynamic behaviors of DNA

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In view of the complex structure and environment, the dynamic analysis on deoxyribonucleic acid (DNA) is a challenge in the biophysics field. Considering the local interaction with ribonucleic acid (RNA)-polymerase as well as the dissipative effect of cellular fluid, a coupling sine-Gordon-type dynamic model is used to describe the rotational motions of the bases in DNA. First, the approximate symmetric form is constructed. Then, the wave form and the wave velocity of the kink solution to the proposed dynamic model are investigated by a Runge-Kutta structure-preserving scheme based on the generalized multi-symplectic idea. The numerical results indicate that, the strengthening of the local interaction between DNA and RNA-polymerase described by the coupling potential makes the form of the kink solution steep, while the appearance of the friction between DNA and cellular fluid makes the form of the kink solution flat. In addition, the appearance of the friction decreases the velocities of both the symplectic configuration and the anti-symplectic configuration with different degrees. The above findings are beneficial to comprehend the DNA transcription mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YAKUSHEVICH, L. V. Nonlinear Physics of DNA, John Wiley & Sons, New York (2004)

    MATH  Google Scholar 

  2. KRATKY, O. and POROD, G. Rötgenuntersuchung gelöter fadenmoleküe. Recueil des Travaux Chimiques des Pays-Bas, 68, 1106–1122 (1949)

    Google Scholar 

  3. ROUSE, JR, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. The Journal of Chemical Physics, 21, 1272–1280 (1953)

    Google Scholar 

  4. ZIMM, B. H. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. The Journal of Chemical Physics, 24, 269–278 (1956)

    MathSciNet  Google Scholar 

  5. FREIRE, J. J. and GARCIADELATORRE, J. A. Generalized bead and spring model for the dynamics of DNA in solution-application to the intrinsic-viscosity. Macromolecules, 12, 971–975 (1979)

    Google Scholar 

  6. ENGLANDER, S., KALLENBACH, N., HEEGER, A., KRUMHANSL, J., and LITWIN, S. Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proceedings of the National Academy of Sciences, 77, 7222–7226 (1980)

    Google Scholar 

  7. YOMOSA, S. Soliton excitations in deoxyribonucleic acid (DNA) double helices. Physical Review A, 27, 2120–2125 (1983)

    MathSciNet  Google Scholar 

  8. YOMOSA, S. Solitary excitations in deoxyribonuclei acid (DNA) double helices. Physical Review A, 30, 474–480 (1984)

    MathSciNet  Google Scholar 

  9. YAKUSHEVICH, L. V. Nonlinear DNA dynamics: a new model. Physics Letters A, 136, 413–417 (1989)

    Google Scholar 

  10. PEYRARD, M. and BISHOP, A. R. Statistical mechanics of a nonlinear model for DNA denaturation. Physical Review Letters, 62, 2755–2758 (1989)

    Google Scholar 

  11. FORINASH, K., BISHOP, A. R., and LOMDAHL, P. S. Nonlinear dynamics in a double-chain model of DNA. Physical Review B, 43, 10743–10750 (1991)

    Google Scholar 

  12. ATEN, J. A., STAP, J., KRAWCZYK, P. M., VAN OVEN, C. H., HOEBE, R. A., ESSERS, J., and KANAAR, R. Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science, 303, 92–95 (2004)

    Google Scholar 

  13. DERKS, G. and GAETA, G. A minimal model of DNA dynamics in interaction with RNApolymerase. Physica D: Nonlinear Phenomena, 240, 1805–1817 (2011)

    MathSciNet  MATH  Google Scholar 

  14. DERKS, G. Stability of fronts in inhomogeneous wave equations. Acta Applicandae Mathematicae, 137, 61–78 (2015)

    MathSciNet  MATH  Google Scholar 

  15. ABDEL-GAWAD, H. I., TANTAWY, M., and OSMAN, M. S. Dynamic of DNA’s possible impact on its samage. Mathematical Methods in the Applied Sciences, 39, 168–176 (2016)

    MathSciNet  MATH  Google Scholar 

  16. YAKUSHEVICH, L. On the mechanical analogue of DNA. Journal of Biological Physics, 43, 113–125 (2017)

    Google Scholar 

  17. MVOGO, A., BEN-BOLIE, G. H., and KOFANE, T. C. Fractional nonlinear dynamics of DNA breathing. Communications in Nonlinear Science and Numerical Simulation, 48, 258–269 (2017)

    MathSciNet  Google Scholar 

  18. MVOGO, A. and KOFANE, T. C. Fractional formalism to DNA chain and impact of the fractional order on breather dynamics. Chaos, 26, 123120 (2016)

    MathSciNet  MATH  Google Scholar 

  19. OKALY, J. B., MVOGO, A., WOULACHE, R. L., and KOFANE, T. C. Nonlinear dynamics of damped DNA systems with long-range interactions. Communications in Nonlinear Science and Numerical Simulation, 55, 183–193 (2017)

    MathSciNet  Google Scholar 

  20. TAGAMI, S., SEKINE, S., KUMAREVEL, T., HINO, N., MURAYAMA, Y., KAMEGAMORI, S., YAMAMOTO, M., SAKAMOTO, K., and YOKOYAMA, S. Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein. nature, 468, 978–982 (2010)

    Google Scholar 

  21. PHILIPS, S. J., CANALIZO-HERNANDEZ, M., YILDIRIM, I., SCHATZ, G. C., MONDRAGON, A., and O’HALLORAN, T. V. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science, 349, 877–881 (2015)

    Google Scholar 

  22. SINGH, R. K., SASIKALA, W. D., and MUKHERJEE, A. Molecular origin of DNA kinking by transcription factors. Journal of Physical Chemistry B, 119, 11590–11596 (2015)

    Google Scholar 

  23. SANDMANN, A. and STICHT, H. Probing the role of intercalating protein sidechains for kink formation in DNA. PLoS One, 13, e0192605 (2018)

    Google Scholar 

  24. ZDRAVKOVIC, S., SATARIC, M. V., and DANIEL, M. Kink solitons in DNA. International Journal of Modern Physics B, 27, 1350184 (2013)

    MATH  Google Scholar 

  25. VANITHA, M. and DANIEL, M. Internal nonlinear dynamics of a short lattice DNA model in terms of propagating kink-antikink solitons. Physical Review E, 85, 041911 (2012)

    Google Scholar 

  26. FENG, K. On difference schemes and symplectic geometry. Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, 42–58 (1984)

    Google Scholar 

  27. PENG, H. J., GAO, Q., WU, Z. G., and ZHONG, W. X. Symplectic multi-level method for solving nonlinear optimal control problem. Applied Mathematics and Mechanics (English Edition), 31(10), 1251–1260 (2010) https://doi.org/10.1007/s10483-010-1358-6

    MathSciNet  MATH  Google Scholar 

  28. WU, F. and ZHONG, W. X. Constrained hamilton variational principle for shallow water problems and Zu-class symplectic algorithm. Applied Mathematics and Mechanics (English Edition), 37(1), 1–14 (2016) https://doi.org/10.1007/s10483-016-2051-9

    MathSciNet  MATH  Google Scholar 

  29. BRIDGES, T. J. Multi-symplectic structures and wave propagation. Mathematical Proceedings of the Cambridge Philosophical Society, 121, 147–190 (1997)

    MathSciNet  MATH  Google Scholar 

  30. BRIDGES, T. J. and REICH, S. Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations. Physica D: Nonlinear Phenomena, 152-153, 491–504 (2001)

    MathSciNet  MATH  Google Scholar 

  31. HU, W. P., DENG, Z. C., and ZHANG, Y. Multi-symplectic method for peakon-antipeakon collision of quasi-Degasperis-Procesi equation. Computer Physics Communications, 185, 2020–2028 (2014)

    MathSciNet  MATH  Google Scholar 

  32. LI, H. C., SUN, J. Q., and QIN, M. Z. New explicit multi-symplectic scheme for nonlinear wave equation. Applied Mathematics and Mechanics (English Edition), 35(3), 369–380 (2014) https://doi.org/10.1007/s10483-014-1797-6

    MathSciNet  MATH  Google Scholar 

  33. HU, W. P., DENG, Z. C., HAN, S. M., and ZHANG, W. R. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. Journal of Computational Physics, 235, 394–406 (2013)

    MathSciNet  MATH  Google Scholar 

  34. HU, W. P., WANG, Z., ZHAO, Y. P., and DENG, Z. C. Symmetry breaking of infinite-dimensional dynamic system. Applied Mathematics Letters, 103, 106207 (2020)

    MathSciNet  Google Scholar 

  35. HU, W. P., DENG, Z. C., WANG, B., and OUYANG, H. J. Chaos in an embedded single-walled carbon nanotube. Nonlinear Dynamics, 72, 389–398 (2013)

    MathSciNet  Google Scholar 

  36. HU, W. P. and DENG, Z. C. Chaos in embedded fluid-conveying single-walled carbon nanotube under transverse harmonic load series. Nonlinear Dynamics, 79, 325–333 (2015)

    Google Scholar 

  37. HU, W. P., SONG, M. Z., DENG, Z. C., ZOU, H. L., and WEI, B. Q. Chaotic region of elastically restrained single-walled carbon nanotube. Chaos, 27, 023118 (2017)

    MathSciNet  Google Scholar 

  38. HU, W. P., LI, Q. J., JIANG, X. H., and DENG, Z. C. Coupling dynamic behaviors of spatial flexible beam with weak damping. International Journal for Numerical Methods in Engineering, 111, 660–675 (2017)

    MathSciNet  Google Scholar 

  39. HU, W. P., DENG, Z. C., and YIN, T. T. Almost structure-preserving analysis for weakly linear damping nonlinear Schr¨odinger equation with periodic perturbation. Communications in Nonlinear Science and Numerical Simulation, 42, 298–312 (2017)

    MathSciNet  Google Scholar 

  40. HU, W. P., SONG, M. Z., and DENG, Z. C. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system. Journal of Sound and Vibration, 412, 59–73 (2018)

    Google Scholar 

  41. HU, W. P., SONG, M. Z., DENG, Z. C., YIN, T. T., and WEI, B. Q. Axial dynamic buckling analysis of embedded single-walled carbon nanotube by complex structure-preserving method. Applied Mathematical Modelling, 52, 15–27 (2017)

    MathSciNet  MATH  Google Scholar 

  42. HU, W. P., SONG, M. Z., YIN, T. T., WEI, B. Q., and DENG, Z. C. Energy dissipation of damping cantilevered single-walled carbon nanotube oscillator. Nonlinear Dynamics, 91, 767–776 (2018)

    Google Scholar 

  43. HU, W. P., YU, L. J., and DENG, Z. C. Minimum control energy of spatial beam with assumed attitude adjustment target. Acta Mechanica Solida Sinica, 33, 51–60 (2020)

    Google Scholar 

  44. HU, W. P. and DENG, Z. C. Non-sphere perturbation on dynamic behaviors of spatial flexible damping beam. Acta Astronautica, 152, 196–200 (2018)

    Google Scholar 

  45. BRIDGES, T. J. and REICH, S. Numerical methods for Hamiltonian PDEs. Journal of Physics A-Mathematical and General, 39, 5287–5320 (2006)

    MathSciNet  MATH  Google Scholar 

  46. HU, W. P., DENG, Z. C., HAN, S. M., and FAN, W. The complex multi-symplectic scheme for the generalized Sinh-Gordon equation. Science in China Series G: Physics, Mechanics and Astronomy, 52, 1618–1623 (2009)

    Google Scholar 

  47. REICH, S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. Journal of Computational Physics, 157, 473–499 (2000)

    MathSciNet  MATH  Google Scholar 

  48. HONG, J. L., LIU, H. Y., and SUN, G. The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs. Mathematics of Computation, 75, 167–181 (2006)

    MathSciNet  MATH  Google Scholar 

  49. HONG, J. L. and LI, C. Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. Journal of Computational Physics, 211, 448–472 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Achknowlegements

The authors wish to thank Professor J. J. FENG of University of British Columbia and Professor G. DERKS of Surrey University for giving us several good suggestions. The authors also wish to thank the Fund of the Youth Innovation Team of Shaanxi Universities and the Seed Foundation of Qian Xuesen Laboratory of Space Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Hu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11972284 and 11672241), the Fund for Distinguished Young Scholars of Shaanxi Province of China (No. 2019JC-29), and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment of China (No.GZ19103)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Deng, Z. Interaction effects of DNA, RNA-polymerase, and cellular fluid on the local dynamic behaviors of DNA. Appl. Math. Mech.-Engl. Ed. 41, 623–636 (2020). https://doi.org/10.1007/s10483-020-2595-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2595-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation