Skip to main content
Log in

A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This study shows that it is possible to develop a well-posed size-dependent model by considering the effect of both nonlocality and surface energy, and the model can provide another effective way of nanomechanics for nanostructures. For a practical but simple problem (an Euler-Bernoulli beam model under bending), the ill-posed issue of the pure nonlocal integral elasticity can be overcome. Therefore, a well-posed governing equation can be developed for the Euler-Bernoulli beams when considering both the pure nonlocal integral elasticity and surface elasticity. Moreover, closed-form solutions are found for the deflections of clamped-clamped (C-C), simply-supported (S-S) and cantilever (C-F) nano-/micro-beams. The effective elastic moduli are obtained in terms of the closed-form solutions since the transfer of physical quantities in the transition region is an important problem for span-scale modeling methods. The nonlocal integral and surface elasticities are adopted to examine the size-dependence of the effective moduli and deflection of Ag beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SRINIVASA, A. R. and REDDY, J. N. An overview of theories of continuum mechanics with nonlocal elastic response and a general framework for conservative and dissipative systems. Applied Mechanics Reviews, 69(3), 031401 (2017)

    Google Scholar 

  2. AIFANTIS, E. C. Update on a class of gradient theories. Mechanics of Materials, 35(3), 259–280 (2003)

    MathSciNet  Google Scholar 

  3. ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54(9), 4703–4710 (1983)

    Google Scholar 

  4. GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57, 291–323 (1975)

    MathSciNet  MATH  Google Scholar 

  5. ERINGEN, A. C. Nonlocal Continuum Field Theories, Springer-Verlag, New York (2002)

    MATH  Google Scholar 

  6. AYDOGDU, M. Axial vibration of the nanorods with the nonlocal continuum rod model. Physica E: Low-dimensional Systems and Nanostructures, 41(5), 861–864 (2009)

    Google Scholar 

  7. REDDY, J. N. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 45(2–8), 288–307 (2007)

    MATH  Google Scholar 

  8. AIFANTIS, E. C. On the gradient approach—relation to Eringen’s nonlocal theory. International Journal of Engineering Science, 49(12), 1367–1377 (2011)

    MathSciNet  MATH  Google Scholar 

  9. CHALLAMEL, N. Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams. Composite Structures, 105, 351–368 (2013)

    Google Scholar 

  10. LIM, C.W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298–313 (2015)

    MathSciNet  MATH  Google Scholar 

  11. LI, L., HU, Y., and LI, X. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. International Journal of Mechanical Sciences, 115, 135–144 (2016)

    Google Scholar 

  12. LI, L., LI, X., and HU, Y. Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science, 102, 77–92 (2016)

    MATH  Google Scholar 

  13. EBRAHIMI, F. and BARATI, M. R. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Composite Structures, 159, 174–182 (2017)

    Google Scholar 

  14. LU, L., GUO, X., and ZHAO, J. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. International Journal of Engineering Science, 116, 12–24 (2017)

    MathSciNet  MATH  Google Scholar 

  15. XU, X. J., WANG, X. C., ZHENG, M. L., and MA, Z. Bending and buckling of nonlocal strain gradient elastic beams. Composite Structures, 160, 366–377 (2017)

    Google Scholar 

  16. ZHANG, B., SHEN, H., LIU, J., WANG, Y., and ZHANG, Y. Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects. Applied Mathematics and Mechanics (English Edition), 40(4), 515–548 (2019) https://doi.org/10.1007/s10483-019-2482-9

    MathSciNet  MATH  Google Scholar 

  17. LI, L., TANG, H., and HU, Y. The effect of thickness on the mechanics of nanobeams. International Journal of Engineering Science, 123, 81–91 (2018)

    MathSciNet  MATH  Google Scholar 

  18. GHAYESH, M. H. and FARAJPOUR, A. A review on the mechanics of functionally graded nanoscale and microscale structures. International Journal of Engineering Science, 137, 8–36 (2019)

    MathSciNet  MATH  Google Scholar 

  19. TANG, H., LI, L., HU, Y., MENG, W., and DUAN, K. Vibration of nonlocal strain gradient beams incorporating Poisson’s ratio and thickness effects. Thin-Walled Structures, 137, 377–391 (2019)

    Google Scholar 

  20. YANG, F., CHONG, A., LAM, D. C., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10), 2731–2743 (2002)

    MATH  Google Scholar 

  21. AKGÖZ, B. and CIVALEK, Ö. A novel microstructure-dependent shear deformable beam model. International Journal of Mechanical Sciences, 99, 10–20 (2015)

    MATH  Google Scholar 

  22. AKGÖZ, B. and CIVALEK, Ö. A size-dependent shear deformation beam model based on the strain gradient elasticity theory. International Journal of Engineering Science, 70, 1–14 (2013)

    MathSciNet  MATH  Google Scholar 

  23. KARAMI, B., SHAHSAVARI, D., JANGHORBAN, M., and LI, L. Influence of homogenization schemes on vibration of functionally graded curved microbeams. Composite Structures, 216, 67–79 (2019)

    Google Scholar 

  24. HE, J. and LILLEY, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Letters, 8(7), 1798–1802 (2008)

    Google Scholar 

  25. WANG, G. F. and FENG, X. Q. Timoshenko beam model for buckling and vibration of nanowires with surface effects. Journal of Physics D, Applied Physics, 42, 155411 (2009)

    Google Scholar 

  26. LIM, C. W. and HE, L. H. Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Internation Journal of Mechanical Sciences, 46, 1715–1726 (2004)

    MATH  Google Scholar 

  27. LU, P., HE, L. H., LEE, H. P., and LU, C. Thin plate theory including surface effects. International Journal of Solids and Structures, 43, 4631–4647 (2006)

    MATH  Google Scholar 

  28. STEIGMANN, D. J. and OGDEN, R. W. Elastic surface-substrate interactions. Proceedings of the Royal Society of London A-Mathematical, Physical and Engineering Sciences, 455, 437–474 (1999)

    MathSciNet  MATH  Google Scholar 

  29. GAO, X., HUANG, Z. P., QU, J. M., and FANG, D. N. A curvature-dependent interfacial energy-based interface stress theory and its applications to nano-structured materials, (i) general theory. Journal of the Mechanics and Physics of Solids, 66, 59–77 (2014)

    MathSciNet  MATH  Google Scholar 

  30. CHEN, S. H. and YAO, Y. Elastic theory of nanomaterials based on surface-energy density. ASME Journal of Applied Mechanics, 81, 121002 (2014)

    Google Scholar 

  31. PAPARGYRI-BESKOU, S., TSEPOURA, K. G., POLYZOS, D., and BESKOS, D. E. Bending and stability analysis of gradient elastic beams. International Journal of Solids and Structures, 40, 385–400 (2003)

    MATH  Google Scholar 

  32. LEE, H. L. and CHANG, W. J. Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. Journal of Applied Physics, 108, 093503 (2010)

    Google Scholar 

  33. GAO, X. L. and MAHMOUD, F. F. A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects. Zeitschrift für angewandte Mathematik und Physik ZAMP, 65, 393–404 (2014)

    MathSciNet  MATH  Google Scholar 

  34. PREETHIA, K., RAJAGOPALA, A., and REDDY, J. N. Surface and non-local effects for nonlinear analysis of Timoshenko beams. International Journal of Non-Linear Mechanics, 76, 100–111 (2015)

    Google Scholar 

  35. LU, L., GUO, X., and ZHAO, J. On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy. International Journal of Engineering Science, 124, 24–40 (2018)

    MathSciNet  MATH  Google Scholar 

  36. LU, L., GUO, X., and ZHAO, J. A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Applied Mathematical Modelling, 68, 583–602 (2019)

    MathSciNet  Google Scholar 

  37. REDDY, J. N. and PANG, S. D. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. Journal of Applied Physics, 103, 023511 (2008)

    Google Scholar 

  38. CHALLAMEL, N. and WANG, C. M. The small length scale effect for a non-local cantilever beam, a paradox solved. Nanotechnology, 19, 345703 (2008)

    Google Scholar 

  39. PEDDIESON, J., BUCHANAN, G., and MCNITT, R. Application of nonlocal continuum models to nanotechnology. International Journal of Engineering Science, 41, 305–312 (2003)

    Google Scholar 

  40. FERNÁNDEZ-SÁEZ, J. and ZAERA, R. Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory. International Journal of Engineering Science, 119, 232–248 (2017)

    MathSciNet  MATH  Google Scholar 

  41. EPTAIMEROS, K., KOUTSOUMARIS, C., and TSAMASPHYROS, G. Nonlocal integral approach to the dynamical response of nanobeams. International Journal of Mechanical Sciences, 115–116, 68–80 (2016)

    Google Scholar 

  42. ZHU, X., WANG, Y., and DAI, H. Buckling analysis of Euler-Bernoulli beams using Eringen’s two-phase nonlocal model. International Journal of Engineering Science, 116, 130–140 (2017)

    MathSciNet  MATH  Google Scholar 

  43. KOUTSOUMARIS, C., EPTAIMEROS, K., and TSAMASPHYROS, G. A different approach to Eringen’s nonlocal integral stress model with applications for beams. International Journal of Solids and Structures, 112, 222–238 (2017)

    Google Scholar 

  44. WANG, Y., ZHU, X., and DAI, H. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. AIP Advances, 6(8), 085114 (2016)

    Google Scholar 

  45. FERNÁNDEZ-SÁEZ, J., ZAERA, R., LOYA, J., and REDDY, J. N. Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. International Journal of Engineering Science, 99, 107–116 (2016)

    MathSciNet  MATH  Google Scholar 

  46. ROMANO, G., BARRETTA, R., DIACO, M., and MAROTTI DE SCIARRA, F. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. International Journal of Mechanical Sciences, 121, 151–156 (2017)

    Google Scholar 

  47. ERINGEN, A. C. Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science, 10(5), 425–435 (1972)

    MathSciNet  MATH  Google Scholar 

  48. KHODABAKHSHI, P. and REDDY, J. N. A unified integro-differential nonlocal model. International Journal of Engineering Science, 95, 60–75 (2015)

    MathSciNet  MATH  Google Scholar 

  49. POLIZZOTTO, C. Nonlocal elasticity and related variational principles. International Journal of Solids and Structures, 38(42), 7359–7380 (2001)

    MathSciNet  MATH  Google Scholar 

  50. ALTAN, S. B. Uniqueness of initial-boundary value problems in nonlocal elasticity. International Journal of Solids and Structures, 25(11), 1271–1278 (1989)

    MathSciNet  MATH  Google Scholar 

  51. BARRETTA, R., FAZELZADEH, S., FEO, L., GHAVANLOO, E., and LUCIANO, R. Nonlocal inflected nano-beams: a stress-driven approach of bi-Helmholtz type. Composite Structures, 200, 239–245 (2018)

    Google Scholar 

  52. BARRETTA, R., CAPORALE, A., FAGHIDIAN, S. A., LUCIANO, R., DE SCIARRA, F. M., and MEDAGLIA, C. M. A stress-driven local-nonlocal mixture model for Timoshenko nanobeams. Composites Part B: Engineering, 164, 590–598 (2019)

    Google Scholar 

  53. GURTIN, M. E. and MURDOCH, A. I. Surface stress in solids. International Journal of Solids and Structures, 14, 431–440 (1978)

    MATH  Google Scholar 

  54. SHIM, H. W., ZHOU, L., HUANG, H., and CALE, T. S. Nanoplate elasticity under surface reconstruction. Applied Physics Letters, 86(15), 151912 (2005)

    Google Scholar 

  55. ZHOU, L. and HUANG, H. Are surfaces elastically softer or stiffer? Applied Physics Letters, 84(11), 1940–1942 (2004)

    Google Scholar 

  56. ZHANG, L. and HUANG, H. Young’s moduli of ZnO nanoplates: Ab initio determinations. Applied Physics Letters, 89(18), 183111 (2006)

    Google Scholar 

  57. KULKARNI, A., ZHOU, M., and KE, F. Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology, 16(12), 2749–2756 (2005)

    Google Scholar 

  58. CAO, G. and CHEN, X. Energy analysis of size-dependent elastic properties of ZnO nanofilms using atomistic simulations. Physical Review B, 76(16), 165407 (2007)

    Google Scholar 

  59. CHEBAKOV, R., KAPLUNOV, J., and ROGERSON, G. A. A non-local asymptotic theory for thin elastic plates. Proceedings of the Royal Society of London A-Mathematical, Physical and Engineering Sciences, 473, 20170249 (2017)

    MathSciNet  MATH  Google Scholar 

  60. SAJADI, B., GOOSEN, H., and VAN KEULEN, F. Capturing the effect of thickness on size-dependent behavior of plates with nonlocal theory. International Journal of Solids and Structures, 115–116, 140–148 (2017)

    Google Scholar 

  61. POLYANIN, A. D. and MANZHIROV, A. V. Handbook of Integral Equations, CRC Press, New York (2008)

    MATH  Google Scholar 

  62. TANG, H., LI, L., and HU, Y. Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams. Applied Mathematical Modelling, 66, 527–547 (2019)

    MathSciNet  Google Scholar 

  63. HEARN, E. J. Mechanics of Materials 1, an Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, Butterworth-Heinemann, Oxford (1997)

    Google Scholar 

  64. LI, L., HU, Y., and LING, L. Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Physica E: Low-dimensional Systems and Nanostructures, 75, 118–124 (2016)

    Google Scholar 

  65. ZHU, X. and LI, L. Closed form solution for a nonlocal strain gradient rod in tension. International Journal of Engineering Science, 119, 16–28 (2017)

    MathSciNet  MATH  Google Scholar 

  66. LI, L., TANG, H., and HU, Y. Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Composite Structures, 184, 1177–1188 (2018)

    Google Scholar 

  67. ZHU, X. and LI, L. On longitudinal dynamics of nanorods. International Journal of Engineering Science, 120, 129–145 (2017)

    MATH  Google Scholar 

  68. ZHU, X. and LI, L. Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. International Journal of Mechanical Sciences, 133, 639–650 (2017)

    Google Scholar 

  69. KAMITAKAHARA, W. and BROCKHOUSE, B. Crystal dynamics of silver. Physics Letters A, 29(10), 639–640 (1969)

    Google Scholar 

  70. CUENOT, S., FŔETIGNY, C., DEMOUSTIER-CHAMPAGNE, S., and NYSTEN, B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B, 69(16), 165410 (2004)

    Google Scholar 

  71. JING, G., DUAN, H., SUN, X., ZHANG, Z., XU, J., LI, Y., WANG, J., and YU, D. Surface effects on elastic properties of silver nanowires, contact atomic-force microscopy. Physical Review B, 73(23), 235409 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

Citation: ZHU, X. W. and LI, L. A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect. Applied Mathematics and Mechanics (English Edition), 40(11), 1561–1588 (2019) https://doi.org/10.1007/s10483-019-2541-5

Project supported by the National Natural Science Foundation of China (No. 51605172), the Natural Science Foundation of Hubei Province of China (No. 2016CFB191), and the Fundamental Research Funds for the Central Universities (Nos. 2722019JCG06 and 2015MS014)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Li, L. A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect. Appl. Math. Mech.-Engl. Ed. 40, 1561–1588 (2019). https://doi.org/10.1007/s10483-019-2541-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2541-5

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation