Skip to main content
Log in

An irreducible polynomial functional basis of two-dimensional Eshelby tensors

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The two-dimensional (2D) Eshelby tensors are discussed. Based upon the complex variable method, an integrity basis of ten isotropic invariants of the 2D Eshelby tensors is obtained. Since an integrity basis is always a polynomial functional basis, these ten isotropic invariants are further proven to form an irreducible polynomial functional basis of the 2D Eshelby tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

M (2) :

two-dimensional (2D) Eshelby tensor

O 2 :

orthogonal group in the 2D physical space

R 2 :

rotation group in the 2D physical space

Q(θ):

a rotation of angle θ in the 2D physical space

:

a special reflection in the 2D physical space

H m :

mth-order irreducible tensor space in the 2D physical space

e i :

orthonormal base in the 2D physical space

ℝ:

real number field

n :

complex number field with the dimension n

Re(x):

real part of a complex number x

⊗:

tensor product

References

  1. ESHELBY, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problem. Proceedings of the Royal Society of London, 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. ESHELBY, J. D. The elastic field outside an ellipsoidal inclusion. Proceedings of the Royal Society of London, 252, 561–569 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. JIANG, Z. Q. and LIU, J. X. Coupled fields of two-dimensional anisotropic magneto-electro-elastic solids with an elliptical inclusion. Applied Mathematics and Mechanics (English Edition), 21(10), 1213–1220 (2000) https://doi.org/10.1007/BF02459001

    Article  MATH  Google Scholar 

  4. MICHELITSCH, T. M., GAO, H., and LEVIN, V. M. Dynamic eshelby tensor and potentials for ellipsoidal inclusions. Proceedings Mathematical Physical and Engineering Sciences, 459, 863–890 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. ZOU, W. N., HE, Q. C., HUANG, M. J., and ZHENG, Q. S. Eshelby’s problem of non-elliptical inclusions. Journal of the Mechanics and Physics of Solids, 58, 346–372 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. HUANG, J. H. and YU, J. S. Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Composites Engineering, 4, 1169–1182 (1994)

    Article  Google Scholar 

  7. PAN, E. Eshelby problem of polygonal inclusions in anisotropic piezoelectric full-and half-planes. Journal of the Mechanics and Physics of Solids, 52, 567–589 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. ROATTA, A. and BOLMARO, R. E. An Eshelby inclusion-based model for the study of stresses and plastic strain localization in metal matrix composites, I: general formulation and its application to round particles. Materials Science and Engineering A, 229, 182–191 (1997)

    Article  Google Scholar 

  9. WANG, X. and SCHIAVONE, P. Two-dimensional Eshelby’s problem for piezoelectric materials with a parabolic boundary. Meccanica, 53, 2659–2667 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. ZOU, W. N. and LEE, Y. Completely explicit solutions of Eshelby’s problems of smooth inclusions embedded in a circular disk, full- and half-planes. Acta Mechanica, 229, 1911–1926 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. SHARMA, P. and SHARMA, R. On the Eshelby’s inclusion problem for ellipsoids with nonuniform dilatational Gaussian and exponential eigenstrains. Journal of Applied Mechanics, 70, 418–425 (2003)

    Article  MATH  Google Scholar 

  12. BACON, D. J., BARNETT, D. M., and SCATTERGOOD, R. O. Anisotropic continuum theory of lattice defects. Progress in Materials Science, 23, 51–262 (1980)

    Article  Google Scholar 

  13. BURYACHENKO, V. A. Multiparticle effective field and related methods in micromechanics of composite materials. Applied Mechanics Reviews, 54, 1–47 (2001)

    Article  Google Scholar 

  14. MURA, T. and BARNETT, D. M. Micromechanics of Defects in Solids, Springer Science and Business Media, Berlin (1987)

    Book  Google Scholar 

  15. TING, T. C. T. Anisotropic Elasticity: Theory and Applications, Oxford Iniversity Press, New York (1996)

    MATH  Google Scholar 

  16. ZHENG, Q. S. On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions. International Journal of Engineering Science, 31, 1013–1024 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. WANG, C. C. A new representation theorem for isotropic functions: an answer to Professor G. F. Smith’s criticism of my papers on representations for isotropic functions, part 1: scalar-valued isotropic functions. Archive for Rational Mechanics and Analysis, 36, 166–197 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. WANG, C. C. A new representation theorem for isotropic functions: an answer to Professor G. F. Smith’s criticism of my papers on representations for isotropic functions, part 2: vector-valued isotropic functions, symmetric tensor-valued isotropic functions, and skew-symmetric tensor-valued functions. Archive for Rational Mechanics and Analysis, 36, 198–223 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. WANG, C. C. Corrigendum to my recent papers on “Representations for isotropic functions” Vol. 36, pp. 166–197, 198–223 (1970). Archive for Rational Mechanics and Analysis, 43, 392–395 (1971)

    Article  MathSciNet  Google Scholar 

  20. SMITH, G. F. On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. International Journal of Engineering Science, 9, 899–916 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  21. BOEHLER, J. P. Application of Tensor Functions in Solid Mechanics, Springer-Verlag, Vienna (1987)

    Book  MATH  Google Scholar 

  22. SMITH, G. F. and BAO, G. Isotropic invariants of traceless symmetric tensors of orders three and four. International Journal of Engineering Science, 35, 1457–1462 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. OLIVE, M. and AUFFRAY, N. Isotropic invariants of completely symmetric third-order tensor. Journal of Mathematical Physics, 55, 092901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. OLIVE, M. About Gordan’s algorithm for binary forms. Foundations of Computational Mathematics, 17, 1407–1466 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. OLIVE, M., KOLEV, B., and AUFFRAY, N. A minimal integrity basis for the elasticity tensor. Archive for Rational Mechanics and Analysis, 226, 1–31 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. LIU, J. J., DING, W. Y., QI, L. Q., and ZOU, W. N. Isotropic polynomial invariants of the Hall tensor. Applied Mathematics and Mechanics (English Edition), 39(12), 1845–1856 (2018) https://doi.org/10.1007/s10483-018-2398-9

    Article  MathSciNet  MATH  Google Scholar 

  27. CHEN, Y. N., HU, S. L., QI, L. Q., and ZOU, W. N. Irreducible function bases of isotropic invariants of a third order symmetric and traceless tensor. Frontiers of Mathematics in China, 14, 1–6 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. CHEN, Z. M., LIU, J. J., QI, L. Q., ZHENG, Q. S., and ZOU, W. N. An irreducible function basis of isotropic invariants of a third order three-dimensional symmetric tensor. Journal of Mathematical Physics, 59, 081703 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. PIERCE, J. F. Representations for transversely hemitropic and transversely isotropic stress-strain relations. Journal of Elasticity, 37, 243–280 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. VIANELLO, M. An integrity basis for plane elasticity tensors. Archives of Mechanics, 49, 197–208 (1997)

    MathSciNet  MATH  Google Scholar 

  31. ZHENG, Q. S., ZHAO, Z. H., and DU, D. X. Irreducible structure, symmetry and average of Eshelby’s tensor fields in isotropic elasticity. Journal of the Mechanics and Physics of Solids, 54, 368–383 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. HILBERT, D. Theory of Algebraic Invariants, Cambridge University Press, New York (1993)

    MATH  Google Scholar 

  33. ZOU, W., ZHENG, Q. S., and DU, D. X. Orthogonal irreducible decompositions of tensors of high orders. Mathematics and Mechanics of Solids, 6, 249–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. PENNISI, S. and TROVATO, M. On the irreducibility of Professor G. F. Smiths representations for isotropic functions. International Journal of Engineering Science, 25, 1059–1065 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Prof. Wennan ZOU for his encouragement during the course of this work and for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zhang.

Additional information

Citation: MING, Z. Y., ZHANG, L. P., and CHEN, Y. N. An irreducible polynomial functional basis of two-dimensional Eshelby tensors. Applied Mathematics and Mechanics (English Edition) 40(8), 1169–1180 (2019) https://doi.org/10.1007/s10483-019-2502-6

Project supported by the National Natural Science Foundation of China (Nos. 11271221, 11771244, 11571178, and 11771405)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, Z., Zhang, L. & Chen, Y. An irreducible polynomial functional basis of two-dimensional Eshelby tensors. Appl. Math. Mech.-Engl. Ed. 40, 1169–1180 (2019). https://doi.org/10.1007/s10483-019-2502-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2502-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation