Skip to main content
Log in

Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The performance of a piecewise-stressed ZnO piezoelectric semiconductor nanofiber is studied with the multi-field coupling theory. The fields produced by equal and opposite forces as well as sinusoidally distributed forces are examined. Specific distributions of potential barriers, wells, and regions with effective polarization charges are found. The results are fundamental for the mechanical tuning on piezoelectric semiconductor devices and piezotronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HUTSON, A. R. and WHITE, D. L. Elastic wave propagation in piezoelectric semiconductors. Journal of Applied Physics, 33, 40–47 (1962)

    Article  Google Scholar 

  2. WHITE, D. L. Amplification of ultrasonic waves in piezoelectric semiconductors. Journal of Applied Physics, 33, 2547–2554 (1962)

    Article  MATH  Google Scholar 

  3. COLLINS, J. H., LAKIN, K. M., QUATE, C. F., and SHAW, H. J. Amplification of acoustic surface waves with adjacent semiconductor and piezoelectric crystals. Applied Physics Letters, 13, 314–316 (1968)

    Article  Google Scholar 

  4. WANG, Z. L. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Advanced Materials, 15, 432–436 (2010)

    Article  Google Scholar 

  5. WEN, X. N., WU, W. Z., DING, Y., and WANG, Z. L. Piezotronic effect in flexible thin-film based devices. Advanced Materials, 25, 3371–3379 (2013)

    Article  Google Scholar 

  6. LEE, K. Y., KUMAR, B., SEO, J. S., KIM, K. H., SOHN, J. I., CHA, S. N., CHOI, D., WANG, Z. L., and KIM, S. W. P-type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Letters, 12, 1959–1964 (2012)

    Article  Google Scholar 

  7. GAO, Y. F. and WANG, Z. L. Electrostatic potential in a bent piezoelectric nanowire: the fun-damental theory of nanogenerator and nanopiezotronics. Nano Letters, 7, 2499–2505 (2007)

    Article  Google Scholar 

  8. LU, M. P., SONG, J. H., LU, M. Y., CHEN, M. T., GAO, Y. F., CHEN, L. J., and WANG, Z. L. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Letters, 9, 1223–1227 (2009)

    Article  Google Scholar 

  9. YANG, Q., LIU, Y., PAN, C. F., CHEN, J., WEN, X. N., and WANG, Z. L. Largely enhanced ef-ficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Letters, 13, 607–613 (2013)

    Article  Google Scholar 

  10. WANG, X. D., ZHOU, J., SONG, J. H., LIU, J., XU, N. S., and WANG, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6, 2768–2772 (2006)

    Article  Google Scholar 

  11. LAO, C. S., PARK, M. C., KUANG, Q., DENG, Y. L., SOOD, A. K., POLLA, D. L., and WANG, Z. L. Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. Journal of the American Chemical Society, 129, 12096–12097 (2007)

    Article  Google Scholar 

  12. LI, P., JIN, F., and MA, J. X. One-dimensional dynamic equations of a piezoelectric semicon-ductor beam with a rectangular cross section and their application in static and dynamic char-acteristic analysis. Applied Mathematics and Mechanics (English Edition), 39(5), 685–702 (2018) https://doi.org/10.1007/s10483-018-2325-6

    Article  MathSciNet  Google Scholar 

  13. LEW-YAN-VOON, L. C. and WILLATZEN, M. Electromechanical phenomena in semiconductor nanostructures. Journal of Applied Physics, 109, 031101 (2011)

    Article  Google Scholar 

  14. PAN, E. Elastic and piezoelectric fields around a quantum dot: fully coupledor semicoupled model? Journal of Applied Physics, 91, 3785–3796 (2002)

    Article  Google Scholar 

  15. PAN, E. Elastic and piezoelectric fields in substrates GaAs (001) and GaAs (111) due to a buried quantum dot. Journal of Applied Physics, 91, 6379–6387 (2002)

    Article  Google Scholar 

  16. JOGAI, B., ALBRECHT, J. D., and PAN, E. Effect of electromechanical coupling on the strain in AlGaN/GaN heterojunction field effect transistors. Journal of Applied Physics, 94, 3984–3985 (2003)

    Article  Google Scholar 

  17. JOGAI, B., ALBRECHT, J. D., and PAN, E. Electromechanical coupling in free-standing Al-GaN/GaN planar structures. Journal of Applied Physics, 94, 6566–6573 (2003)

    Article  Google Scholar 

  18. LIU, Y., ZHANG, Y., YANG, Q., NIU, S. M., and WANG, Z. L. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy, 14, 257–275 (2015)

    Article  Google Scholar 

  19. WANG, Z. L. and WU, W. Z. Piezotronics and piezo-phototronics: fundamentals and applications. National Science Review, 1, 62–90 (2014)

    Article  Google Scholar 

  20. GAO, Y. F. and WANG, Z. L. Electrostatic potential in a bent piezoelectric nanowire: the fun-damental theory of nanogenerator and nanopiezotronics. Nano Letters, 7, 2499–2505 (2007)

    Article  Google Scholar 

  21. GAO, Y. F. and WANG, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Letters, 9, 1103–1110 (2009)

    Article  Google Scholar 

  22. FAN, S. Q., LIANG, Y. X., XIE, J. M., and HU, Y. T. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezo-electric property and the semiconducting performance: part I, linearized analysis. Nano Energy, 40, 82–87 (2017)

    Article  Google Scholar 

  23. LIANG, Y. X., FAN, S. Q., CHEN, X. D., and HU, Y. T. Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction. Beilstein Journal of Nanotechnology, 9, 1917–1925 (2018)

    Article  Google Scholar 

  24. DAI, X. Y., ZHU, F., QIAN, Z. H., and YANG, J. S. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy, 43, 22–28 (2017)

    Article  Google Scholar 

  25. ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Material Structures, 26, 025030 (2016)

    Article  Google Scholar 

  26. ZHANG, C. L., LUO, Y. X., CHENG, R. R., and WANG, X. Y. Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Advances, 2, 3421–3426 (2017)

    Article  Google Scholar 

  27. CHENG, R. R., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 124, 064506 (2018)

    Article  Google Scholar 

  28. WANG, G. L., LIU, J. X., LIU, X. L., FENG, W. J., and YANG, J. S. Extensional vibration char-acteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. Journal of Applied Physics, 124, 094502 (2018)

    Article  Google Scholar 

  29. YANG, W. L., HU, Y. T., and YANG, J. S. Transient extensional vibration in a ZnO piezoelec-tric semiconductor nanofiber under a suddenly applied end force. Materials Research Express, 6, 025902 (2018)

    Article  Google Scholar 

  30. FAN, S. Q., YANG, W. L., and HU, Y. T. Adjustment and control on the fundamental charac-teristics of a piezoelectric PN junction by mechanical-loading. Nano Energy, 52, 416–421 (2018)

    Article  Google Scholar 

  31. JIN, L. S., YAN, X. H., WANG, X. F., HU, W. J., ZHANG, Y., and LI, L. J. Dynamical model for piezotronic and piezo-phototronic devices under low and high frequency external compressive stresses. Journal of Applied Physics, 123, 025709 (2018)

    Article  Google Scholar 

  32. AULD, B. A. Acoustic Fields and Waves in Solids, John Wiley and Sons, New York (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuantai Hu.

Additional information

Citation: FAN, S. Q., HU, Y. T., and YANG, J. S. Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber. Applied Mathematics and Mechanics (English Edition), 40(5), 591–600 (2019) https://doi.org/10.1007/s10483-019-2481-6

Project supported by the National Natural Science Foundation of China (Nos. 11672113 and 51435006) and the Key Laboratory Project of Hubei Province of China (No. 2016CFA073)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Hu, Y. & Yang, J. Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber. Appl. Math. Mech.-Engl. Ed. 40, 591–600 (2019). https://doi.org/10.1007/s10483-019-2481-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2481-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation