Skip to main content
Log in

Nonlinear free vibration of piezoelectric cylindrical nanoshells

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear vibration characteristics of the piezoelectric circular cylindrical nanoshells resting on a viscoelastic foundation are analyzed. The small scale effect and thermo-electro-mechanical loading are taken into account. Based on the nonlocal elasticity theory and Donnell’s nonlinear shell theory, the nonlinear governing equations and the corresponding boundary conditions are derived by employing Hamilton’s principle. Then, the Galerkin method is used to transform the governing equations into a set of ordinary differential equations, and subsequently, the multiple-scale method is used to obtain an approximate analytical solution. Finally, an extensive parametric study is conducted to examine the effects of the nonlocal parameter, the external electric potential, the temper-ature rise, and the Winkler-Pasternak foundation parameters on the nonlinear vibration characteristics of circular cylindrical piezoelectric nanoshells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GAO, Z., ZHU, X., FANG, Y., and ZHANG, H. Active monitoring and vibration control of smart structure aircraft based on FBG sensors and PZT actuators. Aerospace Science and Technology, 63, 101–109 (2017)

    Article  Google Scholar 

  2. SCHINDEL, D. W., HUTCHINS, D. A., and GRANDIA, W. A. Capacitive and piezoelectric air-coupled transducers for resonant ultrasonic inspection. Ultrasonics, 34, 621–627 (1996)

    Article  Google Scholar 

  3. LU, F., LEE, H. P., and LIM, S. P. Modeling and analysis of micro piezoelectric power genera-tors for micro-electromechanical-systems applications. Smart Materials and Structures, 13, 57–63 (2003)

    Article  Google Scholar 

  4. YANG, M. and QIAO, P. Modeling and experimental detection of damage in various materials using the pulse-echo method and piezoelectric sensors/actuators. Smart Materials and Structures, 14, 1083–1100 (2005)

    Article  Google Scholar 

  5. GUPTA, V., SHARMA, M., and THAKUR, N. Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review. Journal of Intelligent Material Systems and Structures, 21, 1227–1243 (2010)

    Article  Google Scholar 

  6. AKSEL, E. and JONES, J. L. Advances in lead-free piezoelectric materials for sensors and actu-ators. Sensors, 10, 1935–1954 (2010)

    Article  Google Scholar 

  7. PAN, Z. W., DAI, Z. R., and WANG, Z. L. Nanobelts of semiconducting oxides. Science, 291, 1947–1949 (2001)

    Article  Google Scholar 

  8. WU, C., KAHN, M., and MOY, W. Piezoelectric ceramics with functional gradients: a new application in material design. Journal of the American Ceramic Society, 79, 809–812 (1996)

    Article  Google Scholar 

  9. PARK, K. I., XU, S., LIU, Y., HWANG, G. T., KANG, S. J. L., WANG, Z. L., and LEE, K. J. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Letters, 10, 4939–4943 (2010)

    Article  Google Scholar 

  10. XU, S. and WANG, Z. L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Research, 4, 1013–1098 (2011)

    Article  Google Scholar 

  11. ZHU, C. S., FANG, X. Q., LIU, J. X., and LI, H. Y. Surface energy effect on nonlinear free vibra-tion behavior of orthotropic piezoelectric cylindrical nano-shells. European Journal of Mechanics-A/Solids, 66, 423–432 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. FANG, X. Q., ZHU, C. S., LIU, J. X., and LIU, X. L. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Physica B: Condensed Matter, 529, 41–56 (2018)

    Article  Google Scholar 

  13. GAO, P. X., SONG, J., LIU, J., and WANG, Z. L. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Advanced Materials, 19, 67–72 (2007)

    Article  Google Scholar 

  14. SEOL, M. L., IM, H., MOON, D. I., WOO, J. H., KIM, D., CHOI, S. J., and CHOI, Y. K. Design strategy for a piezoelectric nanogenerator with a well-ordered nanoshell array. ACS Nano, 7, 10773–10779 (2013)

    Article  Google Scholar 

  15. WANG, X. and SHI, J. Piezoelectric nanogenerators for self-powered nanodevices. Piezoelectric Nanomaterials for Biomedical Applications, Springer, New York, 135–172 (2012)

    Google Scholar 

  16. ZHAO, M. H., WANG, Z. L., and MAO, S. X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Letters, 4, 587–590 (2004)

    Article  Google Scholar 

  17. CHEN, C. Q., SHI, Y., ZHANG, Y. S., ZHU, J., and YAN, Y. J. Size dependence of Young’s modulus in ZnO nanowires. Physical Review Letters, 96, 75505 (2006)

    Article  Google Scholar 

  18. ERINGEN, A. C. Nonlocal Continuum Field Theories, Springer, New York (2002)

    MATH  Google Scholar 

  19. ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54, 4703–4710 (1983)

    Article  Google Scholar 

  20. ERINGEN, A. C. Nonlocal polar elastic continua. International Journal of Engineering Science, 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. KE, L. L. and WANG, Y. S. Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Materials and Structures, 21, 025018 (2012)

    Article  Google Scholar 

  22. WANG, K. F. and WANG, B. L. The electromechanical coupling behavior of piezoelectric nanowires: surface and small-scale effects. Europhysics Letters, 97, 66005 (2012)

    Article  Google Scholar 

  23. ANSARI, R., OSKOUIE, M. F., GHOLAMI, R., and SADEGHI, F. Thermo-electro-mechanical vibration of postbuckled piezoelectric Timoshenko nanobeams based on the nonlocal elasticity theory. Composites Part B: Engineering, 89, 316–327 (2016)

    Article  Google Scholar 

  24. KE, L. L., WANG, Y. S., and REDDY, J. N. Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Composite Structures, 116, 626–636 (2014)

    Article  Google Scholar 

  25. JANDAGHIAN, A. A. and RAHMANI, O. Size-dependent free vibration analysis of functionally graded piezoelectric plate subjected to thermo-electro-mechanical loading. Journal of Intelligent Material Systems and Structures, 28, 3039–3053 (2017)

    Article  Google Scholar 

  26. RAZAVI, H., BABADI, A. F., and BENI, Y. T. Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Composite Structures, 160, 1299–1309 (2017)

    Article  Google Scholar 

  27. KHEIBARI, F. and BENI, Y. T. Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model. Materials and Design, 114, 572–583 (2017)

    Article  Google Scholar 

  28. KE, L. L., WANG, Y. S., and WANG, Z. D. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Composite Structures, 94, 2038–2047 (2012)

    Article  Google Scholar 

  29. ASEMI, S. R., FARAJPOUR, A., and MOHAMMADI, M. Nonlinear vibration analysis of piezo-electric nanoelectromechanical resonators based on nonlocal elasticity theory. Composite Structures, 116, 703–712 (2014)

    Article  Google Scholar 

  30. ANSARI, R. and GHOLAMI, R. Size-dependent nonlinear vibrations of first-order shear de-formable magneto-electro-thermo elastic nanoplates based on the nonlocal elasticity theory. International Journal of Applied Mechanics, 8, 1650053 (2016)

    Article  Google Scholar 

  31. LIU, C., KE, L. L., WANG, Y. S., and YANG, J. Nonlinear vibration of nonlocal piezoelectric nanoplates. International Journal of Structural Stability and Dynamics, 15, 1540013 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. WANG, Y. Q. Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronautica, 143, 263–271 (2018)

    Article  Google Scholar 

  33. WANG, Y. Q. and ZU, J. W. Nonlinear steady-state responses of longitudinally traveling func-tionally graded material plates in contact with liquid. Composite Structures, 164, 130–144 (2017)

    Article  Google Scholar 

  34. WANG, Y. Q. and ZU, J. W. Nonlinear dynamics of a translational FGM plate with strong mode interaction. International Journal of Structural Stability and Dynamics, 18, 1850031 (2018)

    Article  MathSciNet  Google Scholar 

  35. DING, H., CHEN, L. Q., and YANG, S. P. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load. Journal of Sound and Vibration, 331, 2426–2442 (2012)

    Article  Google Scholar 

  36. DING, H., YANG, Y., CHEN, L. Q., and YANG, S. P. Vibration of vehicle-pavement coupled system based on a Timoshenko beam on a nonlinear foundation. Journal of Sound and Vibration, 333, 6623–6636 (2014)

    Article  Google Scholar 

  37. WANG, Y. Q., HUANG, X. B., and LI, J. Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. International Journal of Mechanical Sciences, 110, 201–216 (2016)

    Article  Google Scholar 

  38. SOEDEL, W. Vibrations of Shells and Plates, CRC Presss, Boca Raton (2004)

    MATH  Google Scholar 

  39. AMABILI, M. Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  40. WANG, Q. On buckling of column structures with a pair of piezoelectric layers. Engineering Structures, 24, 199–205 (2002)

    Google Scholar 

  41. LI, H. Y., LIN, Q. R., LIU, Z. X., and WANG, C. Free vibration of piezoelastic laminated cylindrical shells under hydrostatic pressure. International Journal of Solids and Structures, 38, 7571–7585 (2001)

    Article  MATH  Google Scholar 

  42. ZHANG, D. P., LEI, Y. J., and SHEN, Z. B. Thermo-electro-mechanical vibration analysis of piezoelectric nanoplates resting on viscoelastic foundation with various boundary conditions. International Journal of Mechanical Sciences, 131–132, 1001–1015 (2017)

    Article  Google Scholar 

  43. ZHAO, M. H., QIAN, C. F., LEE, S. W. R., TONG, P., SUEMASU, H., and ZHANG, T. Y. Electro-elastic analysis of piezoelectric laminated plates. Advanced Composite Materials, 16, 63–81 (2007)

    Article  Google Scholar 

  44. WANG, Y. Q., YE, C., and ZU, J. W. Identifying temperature effect on vibrations of functionally graded cylindrical shells with porosities. Applied Mathematics and Mechanics (English Edition), 39(11), 1587–1604 (2018) https://doi.org/10.1007/s10483-018-2388-6

    Article  MathSciNet  Google Scholar 

  45. NAYFEH, A. H. and MOOK, D. T. Nonlinear Oscillations, John Wiley & Sons, New York (2008)

    MATH  Google Scholar 

  46. WANG, Y. Q. and ZU, J. W. Instability of viscoelastic plates with longitudinally variable speed and immersed in ideal liquid. International Journal of Applied Mechanics, 9, 1750005 (2017)

    Article  Google Scholar 

  47. GONC¸ALVES, P. B. and RAMOS, N. R. S. S. Numerical method for vibration analysis of cylin-drical shells. Journal of Engineering Mechanics, 123, 544–550 (1997)

    Article  Google Scholar 

  48. DYM, C. L. Some new results for the vibrations of circular cylinders. Journal of Sound and Vibration, 29, 189–205 (1973)

    Article  MATH  Google Scholar 

  49. SHEN, H. S. and XIANG, Y. Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Computer Methods in Applied Mechanics and Engineering, 213, 196–205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. RAJU, K. K. and RAO, G. V. Large amplitude asymmetric vibrations of some thin shells of revolution. Journal of Sound and Vibration, 44, 327–333 (1976)

    Article  MATH  Google Scholar 

  51. RAFIEE, M., MOHAMMADI, M., SOBHANI, ARAGH, B., and YAGHOOBI, H. Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells, part II: numerical results. Composite Structures, 103, 188–196 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Wang.

Additional information

Citation: WANG, Y. Q., LIU, Y. F., and ZU, J. W. Nonlinear free vibration of piezoelectric cylindrical nanoshells. Applied Mathematics and Mechanics (English Edition), 40(5), 601–620 (2019) https://doi.org/10.1007/s10483-019-2476-6

Project supported by the National Natural Science Foundation of China (No. 11672071) and the Fundamental Research Funds for the Central Universities (No.N170504023)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Y. & Zu, J.W. Nonlinear free vibration of piezoelectric cylindrical nanoshells. Appl. Math. Mech.-Engl. Ed. 40, 601–620 (2019). https://doi.org/10.1007/s10483-019-2476-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2476-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation