Skip to main content
Log in

Uncertainty quantification for stochastic dynamical systems using time-dependent stochastic bases

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A novel method based on time-dependent stochastic orthogonal bases for stochastic response surface approximation is proposed to overcome the problem of significant errors in the utilization of the generalized polynomial chaos (GPC) method that approximates the stochastic response by orthogonal polynomials. The accuracy and effectiveness of the method are illustrated by different numerical examples including both linear and nonlinear problems. The results indicate that the proposed method modifies the stochastic bases adaptively, and has a better approximation for the probability density function in contrast to the GPC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ABGRALL, R. and CONGEDO, P. M. A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems. Journal of Computational Physics, 235, 828–845 (2013)

    Article  MathSciNet  Google Scholar 

  2. SIMON, F., GUILLEN, P., SAGAUT, P., and LUCOR, D. A GPC-based approach to uncertain transonic aerodynamics. Computer Methods in Applied Mechanics and Engineering, 199, 1091–1099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. SEPAHVAND, K., MARBURG, S., and HARDTKE, H. J. Stochastic free vibration of orthotropic plates using generalized polynomial chaos expansion. Journal of Sound and Vibration, 331, 167–179 (2012)

    Article  MATH  Google Scholar 

  4. CAPIEZ-LERNOUT, E., SOIZE, C., and MIGNOLET, M. P. Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation. Computer Methods in Applied Mechanics and Engineering, 271, 210–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. JACQUELIN, E., ADHIKARI, S., SINOU, J. J., and FRISWELL, M. I. Polynomial chaos expansion in structural dynamics: accelerating the convergence of the first two statistical moment sequences. Journal of Sound and Vibration, 356, 144–154 (2015)

    Article  Google Scholar 

  6. ZHANG, J. and ELLINGWOOD, B. Effects of uncertain material properties on structural stability. Journal of Structural Engineering, 121, 705–716 (1995)

    Article  Google Scholar 

  7. SINGH, B. N., IYENGAR, N., and YADAV, D. Effects of random material properties on buckling of composite plates. Journal of Engineering Mechanics, 127, 873–879 (2001)

    Article  Google Scholar 

  8. XIU, D. and KARNIADAKIS, G. E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. XIU, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  10. WAN, X. and KARNIADAKIS, G. E. Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM Journal on Scientific Computing, 28, 901–928 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. GHANEM, R. G. and SPANOS, P. D. Stochastic Finite Elements: A Spectral Approach, Dover Publications, Inc., New York (2003)

    MATH  Google Scholar 

  12. XIU, D. and HESTHAVEN, J. S. High-order collocation methods for differential equations with random inputs. SIAM Journal on Scientific Computing, 27, 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. MA, X. and ZABARAS, N. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. Journal of Computational Physics, 228, 3084–3113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. GANIS, B., KLIE, H., WHEELER, M. F., WILDEY, T., YOTOV, I., and ZHANG, D. Stochastic collocation and mixed finite elements for flow in porous media. Computer Methods in Applied Mechanics and Engineering, 197, 3547–3559 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. NEGOITA, C., ZADEH, L., and ZIMMERMANN, H. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28 (1978)

    Article  MathSciNet  Google Scholar 

  16. KLIMKE, A. and WOHLMUTH, B. Computing expensive multivariate functions of fuzzy numbers using sparse grids. Fuzzy Sets and Systems, 154, 432–453 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. MOORE, R. E. Interval Analysis, Prentice-Hall Englewood Cliffs, New York (1966)

    Google Scholar 

  18. IMPOLLONIA, N. and MUSCOLINO, G. Interval analysis of structures with uncertain-butbounded axial stiffness. Computer Methods in Applied Mechanics and Engineering, 200, 1945–1962 (2011)

    Article  MATH  Google Scholar 

  19. YIN, S., YU, D., YIN, H., and XIA, B. Interval and random analysis for structure-acoustic systems with large uncertain-but-bounded parameters. Computer Methods in Applied Mechanics and Engineering, 305, 910–935 (2016)

    Article  MathSciNet  Google Scholar 

  20. SOIZE, C. Random matrix theory for modeling uncertainties in computational mechanics. Computer Methods in Applied Mechanics and Engineering, 194, 1333–1366 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. SOIZE, C. Random matrix theory and non-parametric model of random uncertainties in vibration analysis. Journal of Sound and Vibration, 263, 893–916 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. XIU, D. and KARNIADAKIS, G. E. Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 187, 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. BLATMAN, G. and SUDRET, B. Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational Physics, 230, 2345–2367 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. ROSIĆ, B. V., LITVINENKO, A., PAJONK, O., and MATTHIES, H. G. Sampling-free linear Bayesian update of polynomial chaos representations. Journal of Computational Physics, 231, 5761–5787 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. GERRITSMA, M., VAN DER STEEN, J. B., VOS, P., and KARNIADAKIS, G. Time-dependent generalized polynomial chaos. Journal of Computational Physics, 229, 8333–8363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. PANUNZIO, A. M., SALLES, L., and SCHWINGSHACKL, C. W. Uncertainty propagation for nonlinear vibrations: a non-intrusive approach. Journal of Sound and Vibration, 389, 309–325 (2017)

    Article  Google Scholar 

  27. NAJM, H. N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annual Review of Fluid Mechanics, 41, 35–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. TOOTKABONI, M., ASADPOURE, A., and GUEST, J. K. Topology optimization of continuum structures under uncertainty—a polynomial chaos approach. Computer Methods in Applied Mechanics and Engineering, 201, 263–275 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. GHANEM, R. and GHOSH, D. Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition. International Journal for Numerical Methods in Engineering, 72, 486–504 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. PASCUAL, B. and ADHIKARI, S. Hybrid perturbation-polynomial chaos approaches to the random algebraic eigenvalue problem. Computer Methods in Applied Mechanics and Engineering, 217, 153–167 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. MANAN, A. and COOPER, J. Prediction of uncertain frequency response function bounds using polynomial chaos expansion. Journal of Sound and Vibration, 329, 3348–3358 (2010)

    Article  Google Scholar 

  32. PENG, Y. B., GHANEM, R., and LI, J. Polynomial chaos expansions for optimal control of nonlinear random oscillators. Journal of Sound and Vibration, 329, 3660–3678 (2010)

    Article  Google Scholar 

  33. WAN, X. and KARNIADAKIS, G. E. Long-term behavior of polynomial chaos in stochastic flow simulations. Computer Methods in Applied Mechanics and Engineering, 195, 5582–5596 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. ORSZAG, S. A. and BISSONNETTE, L. R. Dynamical properties of truncated Wiener-Hermite expansions. Physics of Fluids, 10, 2603–2613 (1967)

    Article  MATH  Google Scholar 

  35. HEUVELINE, V. and SCHICK, M. A local time-dependent generalized polynomial chaos method for stochastic dynamical systems. Preprint (2011) https://doi.org/10.11588/emclpp.2011.04.11694

    Google Scholar 

  36. BECK, M. H., JÄCKLE, A., WORTH, G., and MEYER, H. D. The multiconfiguration timedependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Physics Reports, 324, 1–105 (2000)

    Article  Google Scholar 

  37. DE LATHAUWER, L., DE MOOR, B., and VANDEWALLE, J. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21, 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. DE LATHAUWER, L., DE MOOR, B., and VANDEWALLE, J. On the best rank-1 and rank-(r 1, r 2, · · ·, r n) approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applications, 21, 1324–1342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhike Peng.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11632011, 11572189, and 51421092) and the China Postdoctoral Science Foundation (No. 2016M601585)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, J., Zhang, Q., Wei, S. et al. Uncertainty quantification for stochastic dynamical systems using time-dependent stochastic bases. Appl. Math. Mech.-Engl. Ed. 40, 63–84 (2019). https://doi.org/10.1007/s10483-019-2409-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2409-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation