Skip to main content
Log in

Phase-field simulation of the coupled evolutions of grain and twin boundaries in nanotwinned polycrystals

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Nanotwinned polycrystals exhibit an excellent strength-ductility combination due to nanoscale twins and grains. However, nanotwin-assisted grain coarsening under mechanical loading reported in recent experiments may result in strength drop based on the Hall-Petch law. In this paper, a phase-field model is developed to investigate the effect of coupled evolutions of twin and grain boundaries on nanotwin-assisted grain growth. The simulation result demonstrates that there are three pathways for coupled motions of twin and grain boundaries in a bicrystal under the applied loading, dependent on the amplitude of applied loading and misorientation of the bicrystal. It reveals that a large misorientation angle and a large applied stress promote the twinning-driven grain boundary migration. The resultant twin-assisted grain coarsening is confirmed in the simulations for the microstructural evolutions in twinned and un-twinned polycrystals under a high applied stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HALL, E. O. The deformation and ageing of mild steel: III discussion of results. Proceedings of the Physical Society Section B, 64, 495–502 (1951)

    Article  Google Scholar 

  2. LU, L., SHEN, Y. F., CHEN, X. H., QIAN, L. H., and LU, K. Ultrahigh strength and high electrical conductivity in copper. Science, 304, 422–426 (2004)

    Article  Google Scholar 

  3. YANG, F. and YANG, W. Crack growth versus blunting in nanocrystalline metals with extremely small grain size. Journal of the Mechanics and Physics of Solids, 57, 305–324 (2009)

    Article  MATH  Google Scholar 

  4. SCHIOTZ, J., DI TOLLA, F. D., and JACOBSEN, K. W. Softening of nanocrystalline metals at very small grain sizes. nature, 391, 561–563 (1998)

    Article  Google Scholar 

  5. KOCK, C. C. Structural nanocrystalline materials: an overview. Journal of Materials Science, 42, 1403–1414 (2007)

    Article  Google Scholar 

  6. SHEN, Y. F., LU, L., LU, Q. H., JIN, Z. H., and LU, K. Tensile properties of copper with nano-scale twins. Scripta Materialia, 52, 989–994 (2005)

    Article  Google Scholar 

  7. LU, L., SCHWAIGER, R., SHAN, Z. W., DAO, M., LU, K., and SURESH, S. Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Materialia, 53, 2169–2179 (2005)

    Article  Google Scholar 

  8. LU, L., CHEN, X., HUANG, X., and LU, K. Revealing the maximum strength in nanotwinned copper. Science, 323, 607–610 (2009)

    Article  Google Scholar 

  9. CHEN, X. H. and LU, L. Work hardening of ultrafine-grained copper with nanoscale twins. Scripta Materialia, 57, 133–136 (2007)

    Article  Google Scholar 

  10. LU, K., LU, L., and SURESH, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science, 324, 349–352 (2009)

    Article  Google Scholar 

  11. WEI, Y. J. Scaling of maximum strength with grain size in nanotwinned fcc metals. Physical Review B, 83, 132104 (2011)

    Article  Google Scholar 

  12. WEI, Y. J., LI, Y., ZHU, L., LIU, Y., LEI, X., WANG, G., WU, Y., MI, Z., LIU, J., and WANG, H. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nature Communications, 5, 3580 (2014)

    Article  Google Scholar 

  13. LI, X., WEI, Y. J., LU, L., LU, K., and GAO, H. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. nature, 464, 877–880 (2010)

    Article  Google Scholar 

  14. ZHU, T., LI, J., SAMANTA, A., KIM, H. G., and SURESH, S. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proceedings of the National Academy of Sciences, 104, 3031–3036 (2007)

    Article  Google Scholar 

  15. ZHU, L., QU, S., GUO, X., and LU, J. Analysis of the twin spacing and grain size effects on mechanical properties in hierarchically nanotwinned face-centered cubic metals based on a mechanism-based plasticity model. Journal of the Mechanics and Physics of Solids, 76, 162–179 (2015)

    Article  MathSciNet  Google Scholar 

  16. LI, J., ZHANG, J. Y., LIU, G., and SUN, J. New insight into the stable grain size of nanotwinned Ni in steady-state creep: effect of the ratio of effective-to-internal stress. International Journal of Plasticity, 85, 172–189 (2016)

    Article  Google Scholar 

  17. LU, K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nature Reviews Materials, 1, 16019 (2016)

    Article  Google Scholar 

  18. ANDRIEVSKI, R. A. Review of thermal stability of nanomaterials. Journal of Materials Science, 49, 1449–1460 (2013)

    Article  Google Scholar 

  19. PENG, H. R., GONG, M. M., CHEN, Y. Z., and LIU, F. Thermal stability of nanocrystalline materials: thermodynamics and kinetics. International Materials Reviews, 62, 303–333 (2017)

    Article  Google Scholar 

  20. TRELEWICZ, J. R. and SCHUH, C. A. Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Physical Review B, 79, 094112 (2009)

    Article  Google Scholar 

  21. ABDELJAWAD, F. and FOILES, S. M. Stabilization of nanocrystalline alloys via grain boundary segregation: a diffuse interface model. Acta Materialia, 101, 159–171 (2015)

    Article  Google Scholar 

  22. CHOOKAJORN, T., MURDOCH, H. A., and SCHUH, C. A. Design of stable nanocrystalline alloys. Science, 337, 951–954 (2012)

    Article  Google Scholar 

  23. KIRCHHEIM, R. Grain coarsening inhibited by solute segregation. Acta Materialia, 50, 413–419 (2002)

    Article  Google Scholar 

  24. SABER, M., KOCH, C. C., and SCATTERGOOD, R. O. Thermodynamic grain size stabilization models: an overview. Materials Research Letters, 3, 65–75 (2015)

    Article  Google Scholar 

  25. KOCH, C., SCATTERGOOD, R., DARLING, K., and SEMONES, J. Stabilization of nanocrystalline grain sizes by solute additions. Journal of Materials Science, 43, 7264–7272 (2008)

    Article  Google Scholar 

  26. GIANLLA, D. S., VAN PETEGEM, S., LEGROS, M., BRANDSTETTER, S., VAN SWYGEN-HOVEN, H., and HEMKER, K. J. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Materialia, 54, 2253–2263 (2006)

    Article  Google Scholar 

  27. HEO, T. W. and CHEN, L. Q. Phase-field modeling of displacive phase transformations in elastically anisotropic and inhomogeneous polycrystals. Acta Materialia, 76, 68–81 (2014)

    Article  Google Scholar 

  28. ZHANG, H.W., HEI, Z. K., LIU, G., LU, J., and LU, K. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Materialia, 51, 1871–1881 (2003)

    Article  Google Scholar 

  29. CHEN, W., YOU, Z., TAO, N., JIN, Z., and LU, L. Mechanically-induced grain coarsening in gradient nano-grained copper. Acta Materialia, 125, 255–264 (2017)

    Article  Google Scholar 

  30. ROMERO, P. A., JARVI, T. T., BECKMANN, N., MROVEC, M., and MOSELER, M. Coarse graining and localized plasticity between sliding nanocrystalline metals. Physical Review Letters, 113, 036101 (2014)

    Article  Google Scholar 

  31. HASLAM, A., MOLDOVAN, D., YAMAKOV, V., WOLF, D., PHILLPOT, S., and GLEITER, H. Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Materialia, 51, 2097–2112 (2003)

    Article  Google Scholar 

  32. LI, J. C. Mechanical grain growth in nanocrystalline copper. Physical Review Letters, 96, 215506 (2006)

    Article  Google Scholar 

  33. LEGROS, M., GIANOLA, D. S., and HEMKER, K. J. In situ TEM observations of fast grainboundary motion in stressed nanocrystalline aluminum films. Acta Materialia, 56, 3380–3393 (2008)

    Article  Google Scholar 

  34. LIN, Y., WEN, H., LI, Y., WEN, B., LIU, W., and LAVERNIA, E. J. An analytical model for stress-induced grain growth in the presence of both second-phase particles and solute segregation at grain boundaries. Acta Materialia, 82, 304–315 (2015)

    Article  Google Scholar 

  35. TONKS, M. and MILLETT, P. Phase field simulations of elastic deformation-driven grain growth in 2D copper polycrystals. Materials Science and Engineering: A, 528, 4086–4091 (2011)

    Article  Google Scholar 

  36. RUPERT, T. J., GIANOLA, D. S., GAN, Y., and HEMKER, K. J. Experimental observations of stress-driven grain boundary migration. Science, 326, 1686–1690 (2009)

    Article  Google Scholar 

  37. GLUSHKO, O. and CORDILL, M. The driving force governing room temperature grain coarsening in thin gold films. Scripta Materialia, 130, 42–45 (2017)

    Article  Google Scholar 

  38. CAHN, J. W., MISHIN, Y., and SUZUKI, A. Coupling grain boundary motion to shear deformation. Acta Materialia, 54, 4953–4975 (2006)

    Article  Google Scholar 

  39. YAMAKOV, V., WOLF, D., PHILLPOT, S. R., and GLEITER, H. Deformation twinning in nanocrystalline Al by molecular dynamics simulation. Acta Materialia, 50, 5005–5020 (2002)

    Article  Google Scholar 

  40. WANG, P., XU, S., LIU, J., LI, X., WEI, Y., WANG, H., GAO, H., and YANG, W. Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights. Journal of the Mechanics and Physics of Solids, 98, 290–308 (2017)

    Article  Google Scholar 

  41. BEYERLEIN, I. J., ZHANG, X., and MISRA, A. Growth twins and deformation twins in metals. Annual Review of Materials Research, 44, 329–363 (2014)

    Article  Google Scholar 

  42. LUO, X. M., ZHU, X. F., and ZHANG, G. P. Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nature Communications, 5, 3021 (2014)

    Article  Google Scholar 

  43. LUO, X. M., LI, X., and ZHANG, G. P. Forming incoherent twin boundaries: a new way for nanograin growth under cyclic loading. Materials Research Letters, 5, 95–101 (2017)

    Article  Google Scholar 

  44. LI, J., ZHANG, J. Y., JIANG, L., ZHANG, P., WU, K., LIU, G., and SUN, J. Twinning/detwinning-mediated grain growth and mechanical properties of free-standing nanotwinned Ni foils: grain size and strain rate effects. Materials Science and Engineering: A, 628, 62–74 (2015)

    Article  Google Scholar 

  45. FAN, D. and CHEN, L. Q. Computer simulation of grain growth using a continuum field model. Acta Materialia, 45, 611–622 (1997)

    Article  Google Scholar 

  46. HEO, T.W., WANG, Y., BHATTACHARYA, S., SUN, X., HU, S., and CHEN, L. Q. A phase-field model for deformation twinning. Philosophical Magazine Letters, 91, 110–121 (2011)

    Article  Google Scholar 

  47. HU, S. Y., HENAGER, C. H., and CHEN, L. Q. Simulations of stress-induced twinning and de-twinning: a phase field model. Acta Materialia, 58, 6554–6564 (2010)

    Article  Google Scholar 

  48. JIN, Y. M. Domain microstructure evolution in magnetic shape memory alloys: phase-field model and simulation. Acta Materialia, 57, 2488–2495 (2009)

    Article  Google Scholar 

  49. HONG, X., GODFREY, A., and LIU, W. Challenges in the prediction of twin transmission at grain boundaries in a magnesium alloy. Scripta Materialia, 123, 77–80 (2016)

    Article  Google Scholar 

  50. SINHA, S. and GURAO, N. P. In situ electron backscatter diffraction study of twinning in commercially pure titanium during tension-compression deformation and annealing. Materials and Design, 116, 686–693 (2017)

    Article  Google Scholar 

  51. GONG, M., HIRTH, J. P., LIU, Y., SHEN, Y., and WANG, J. Interface structures and twinning mechanisms of twins in hexagonal metals. Materials Research Letters, 5, 449–464 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Yujie WEI for helpful discussion and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ni.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11672285), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB22040502), the Collaborative Innovation Center of Suzhou Nano Science and Technology, and the Fundamental Research Funds for the Central Universities

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, Y., Lu, Y. & Ni, Y. Phase-field simulation of the coupled evolutions of grain and twin boundaries in nanotwinned polycrystals. Appl. Math. Mech.-Engl. Ed. 39, 1789–1804 (2018). https://doi.org/10.1007/s10483-018-2393-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2393-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation