Advertisement

Applied Mathematics and Mechanics

, Volume 39, Issue 1, pp 47–62 | Cite as

Mesoscale modeling of microgel mechanics and kinetics through the swelling transition

  • S. Nikolov
  • A. Fernandez-Nieves
  • A. AlexeevEmail author
Article

Abstract

The mechanics and swelling kinetics of polymeric microgels are simulated using a mesoscale computational model based on dissipative particle dynamics. Microgels are represented by a random elastic network submerged in an explicit viscous solvent. The model is used to probe the effect of different solvent conditions on the bulk modulus of the microgels. Comparison of the simulation results through the volume phase transition reveals favorable agreement with Flory-Rehner’s theory for polymeric gels. The model is also used to examine the microgel swelling kinetics, and is found to be in good agreement with Tanaka’s theory for spherical gels. The simulations show that, during the swelling process, the microgel maintains a nearly homogeneous structure, whereas deswelling is characterized by the formation of chain bundles and network coarsening.

Key words

soft matter dissipative particle dynamics micromechanics hydrogels 

Chinese Library Classification

O631 

2010 Mathematics Subject Classification

65C35 82C80 82B26 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hoffman, A. S. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18–23 (2012)CrossRefGoogle Scholar
  2. [2]
    Chaudhuri, O., Gu, L., Klumpers, D., Darnell, M., Bencherif, S. A., Weaver, J. C., Huebsch, N., Lee, H. P., Lippens, E., and Duda, G. N. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 15, 326 (2016)CrossRefGoogle Scholar
  3. [3]
    Shin, S. R., Bae, H., Cha, J. M., Mun, J. Y., Chen, Y. C., Tekin, H., Shin, H., Farshchi, S., Dokmeci, M. R., and Tang, S. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano, 6, 362–372 (2011)CrossRefGoogle Scholar
  4. [4]
    Kim, M. Y. and Kim, J. Y. Chitosan microgels embedded with catalase nanozyme-loaded mesocellular silica foam for glucose-responsive drug delivery. ACS Biomaterials Science and Engineering, 3, 572–578 (2017)CrossRefGoogle Scholar
  5. [5]
    Utech, S., Prodanovic, R., Mao, A. S., Ostafe, R., Mooney, D. J., and Weitz, D. A. Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Advanced Healthcare Materials, 4, 1628–1633 (2015)CrossRefGoogle Scholar
  6. [6]
    Hardin, J. O., Fernandez-Nieves, A., Martinez, C. J., and Milam, V. T. Altering colloidal surface functionalization using DNA encapsulated inside monodisperse gelatin microsphere templates. Langmuir, 29, 5534–5539 (2013)CrossRefGoogle Scholar
  7. [7]
    Brown, A. C., Stabenfeldt, S. E., Ahn, B., Hannan, R. T., Dhada, K. S., Herman, E. S., Stefanelli, V., Guzzetta, N., Alexeev, A., Lam, W. A., Lyon, L. A., and Barker, T. H. Ultrasoft microgels displaying emergent platelet-like behaviours. Nature Materials, 13, 1108–1114 (2014)CrossRefGoogle Scholar
  8. [8]
    Douglas, A. M., Fragkopoulos, A. A., Gaines, M. K., Lyon, L. A., Fernandez-Nieves, A., and Barker, T. H. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers. Proceedings of the National Academy of Sciences, 114, 885–890 (2017)CrossRefGoogle Scholar
  9. [9]
    Wu, S. H., Duan, B., Qin, X. H., and Butcher, J. T. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application. Acta Biomaterialia, 60, 144–153 (2017)CrossRefGoogle Scholar
  10. [10]
    Ye, C. H., Nikolov, S. V., Calabrese, R., Dindar, A., Alexeev, A., Kippelen, B., Kaplan, D. L., and Tsukruk, V. V. Self-(un)rolling biopolymer microstructures: rings, tubules, and helical tubules from the same material. Angewandte Chemie International Edition, 54, 8490–8493 (2015)CrossRefGoogle Scholar
  11. [11]
    Ye, C. H., Nikolov, S. V., Geryak, R. D., Calabrese, R., Ankner, J. F., Alexeev, A., Kaplan, D. L., and Tsukruk, V. V. Bimorph silk microsheets with programmable actuating behavior: experimental analysis and computer simulations. ACS Applied Materials and Interfaces, 8, 17694–17706 (2016)CrossRefGoogle Scholar
  12. [12]
    Vikram, S. A. and Sitti, M. Targeted drug delivery and imaging using mobile milli/microrobots: a promising future towards theranostic pharmaceutical design. Current Pharmaceutical Design, 22, 1418–1428 (2016)CrossRefGoogle Scholar
  13. [13]
    Nikolov, S. V., Yeh, P. D., and Alexeev, A. Self-propelled microswimmer actuated by stimuli- sensitive bilayered hydrogel. ACS Macro Letters, 4, 84–88 (2015)CrossRefGoogle Scholar
  14. [14]
    Masoud, H., Bingham, B. I., and Alexeev, A. Designing maneuverable micro-swimmers actuated by responsive gel. Soft Matter, 8, 8944–8951 (2012)CrossRefGoogle Scholar
  15. [15]
    Du, H. B. and Qian, X. H. Molecular dynamics simulations of PNIPAM-co-PEGMA copolymer hydrophilic to hydrophobic transition in NaCl solution. Journal of Polymer Science Part B: Polymer Physics, 49, 1112–1122 (2011)CrossRefGoogle Scholar
  16. [16]
    Kang, M. K. and Huang, R. A variational approach and finite element implementation for swelling of polymeric hydrogels under geometric constraints. Journal of Applied Mechanics, 77, 061004 (2010)CrossRefGoogle Scholar
  17. [17]
    Mills, Z. G., Mao, W. B., and Alexeev, A. Mesoscale modeling: solving complex flows in biology and biotechnology. Trends in Biotechnology, 31, 426–434 (2013)CrossRefGoogle Scholar
  18. [18]
    Yeh, P. D. and Alexeev, A. Mesoscale modelling of environmentally responsive hydrogels: emerg- ing applications. Chemical Communications, 51, 10083–10095 (2015)CrossRefGoogle Scholar
  19. [19]
    Espanol, P. and Warren, P. Perspective: dissipative particle dynamics. The Journal of Chemical Physics, 146, 150901 (2017)CrossRefGoogle Scholar
  20. [20]
    Groot, R. D. and Warren, P. B. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 107, 4423–4435 (1997)CrossRefGoogle Scholar
  21. [21]
    Hoogerbrugge, P. J. and Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters, 19, 155–160 (1992)CrossRefGoogle Scholar
  22. [22]
    Espanol, P. and Warren, P. Statistical-mechanics of dissipative particle dynamics. Europhysics Letters, 30, 191–196 (1995)CrossRefGoogle Scholar
  23. [23]
    Glotzer, S. C. and Paul, W. Molecular and mesoscale simulation methods for polymer materials. Annual Review of Materials Research, 32, 401–436 (2002)CrossRefGoogle Scholar
  24. [24]
    Groot, R. D. and Rabone, K. L. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophysical Journal, 81, 725–736 (2001)CrossRefGoogle Scholar
  25. [25]
    Chen, S., Phan-Thien, N., Fan, X. J., and Khoo, B. C. Dissipative particle dynamics simulation of polymer drops in a periodic shear flow. Journal of Non-Newtonian Fluid Mechanics, 118, 65–81 (2004)CrossRefzbMATHGoogle Scholar
  26. [26]
    Fedosov, D. A., Karniadakis, G. E., and Caswell, B. Dissipative particle dynamics simulation of depletion layer and polymer migration in micro and nanochannels for dilute polymer solutions. Journal of Chemical Physics, 128, 144903 (2008)CrossRefGoogle Scholar
  27. [27]
    Spenley, N. A. Scaling laws for polymers in dissipative particle dynamics. Europhysics Letters, 49, 534–540 (2000)CrossRefGoogle Scholar
  28. [28]
    Ripoll, M., Ernst, M. H., and Espanol, P. Large scale and mesoscopic hydrodynamics for dissipative particle dynamics. Journal of Chemical Physics, 115, 7271–7284 (2001)CrossRefGoogle Scholar
  29. [29]
    Lee, M. T., Vishnyakov, A. N., and Alexander, V. Modeling proton dissociation and transfer using dissipative particle dynamics simulation. Journal of Chemical Theory and Computation, 11, 4395–4403 (2015)CrossRefGoogle Scholar
  30. [30]
    Li, N. K., Kuang, H. H., Fuss, W. H., and Yingling, Y. G. Salt responsive morphologies of ssDNA-based triblock polyelectrolytes in semi-dilute regime: effect of volume fractions and polyelectrolyte length. Macromolecular Rapid Communications, 38, 1700422 (2017)CrossRefGoogle Scholar
  31. [31]
    Groot, R. D. Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants. Journal of Chemical Physics, 118, 11265–11277 (2003)CrossRefGoogle Scholar
  32. [32]
    Ibergay, C., Malfreyt, P., and Tildesley, D. J. Electrostatic interactions in dissipative particle dynamics: toward a mesoscale modeling of the polyelectrolyte brushes. Journal of Chemical Theory and Computation, 5, 3245–3259 (2009)CrossRefGoogle Scholar
  33. [33]
    Boek, E. S., Coveney, P. V., Lekkerkerker, H. N. W., and van der Schoot, P. Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics. Physical Review E, 55, 3124–3133 (1997)CrossRefGoogle Scholar
  34. [34]
    Symeonidis, V., Karniadakis, G. E., and Caswell, B. Dissipative particle dynamics simulations of polymer chains: scaling laws and shearing response compared to DNA experiments. Physical Review Letters, 95, 076001 (2005)CrossRefGoogle Scholar
  35. [35]
    Ganzenmuller, G. C., Hiermaier, S., and Steinhauser, M. O. Shock-wave induced damage in lipid bilayers: a dissipative particle dynamics simulation study. Soft Matter, 7, 4307–4317 (2011)CrossRefGoogle Scholar
  36. [36]
    Chu, X. L., Aydin, F., and Meenakshi, D. Modeling interactions between multicomponent vesicles and antimicrobial peptide-inspired nanoparticles. ACS Nano, 10, 7351–7361 (2016)CrossRefGoogle Scholar
  37. [37]
    Pivkin, I. V., Peng, Z. L., Karniadakis, G. E., Buffet, P. A., Dao, M., and Suresh, S. A Biomechanics of red blood cells in human spleen and consequences for physiology and disease. Proceedings of the National Academy of Sciences of the United States of America, 114, E4521 (2017)Google Scholar
  38. [38]
    Masoud, H. and Alexeev, A. Permeability and diffusion through mechanically deformed random polymer networks. Macromolecules, 43, 10117–10122 (2010)CrossRefGoogle Scholar
  39. [39]
    Masoud, H. and Alexeev, A. Controlled release of nanoparticles and macromolecules from re- sponsive microgel capsules. ACS Nano, 6, 212–219 (2012)CrossRefGoogle Scholar
  40. [40]
    Sirk, T. W., Slizoberg, Y. R., Brennan, J. K., Lisal, M., and Andzelm, J. W. An enhanced entangled polymer model for dissipative particle dynamics. Journal of Chemical Physics, 136, 134903 (2012)CrossRefGoogle Scholar
  41. [41]
    Tarjan, R. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1, 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    Pelaez-Fernandez, M., Souslov, A., Lyon, L. A., Goldbart, P. M., and Fernandez-Nieves, A. Impact of single-particle compressibility on the fluid-solid phase transition for ionic microgel suspensions. Physical Review Letters, 114, 098303 (2015)CrossRefGoogle Scholar
  43. [43]
    Senff, H. and Richtering, W. Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid and Polymer Science, 278, 830–840 (2000)CrossRefGoogle Scholar
  44. [44]
    Fernandez-Nieves, A., Wyss, H., Mattsson, J., and Weitz, D. A. Microgel Suspensions: Fundamentals and Applications, John Wiley and Sons, Singapore (2011)CrossRefGoogle Scholar
  45. [45]
    De Gennes, P. G. Scaling Concepts in Polymer Physics, Cornell University Press, New York (1979)Google Scholar
  46. [46]
    Annabi, N., Nichol, J. W., Zhong, X., Ji, C. D., Koshy, S., Khademhosseini, A., and Dehghani, F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering Part B: Reviews, 16, 371–383 (2010)CrossRefGoogle Scholar
  47. [47]
    Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18, 015012 (2009)CrossRefGoogle Scholar
  48. [48]
    Sierra-Martin, B., Laporte, Y., South, A. B., Lyon, L. A., and Fernandez-Nieves, A. Bulk modulus of poly (N-isopropylacrylamide) microgels through the swelling transition. Physical Review E, 84, 011406 (2011)CrossRefGoogle Scholar
  49. [49]
    Hirotsu, S. Static and time-dependent properties of polymer gels around the volume phase transition. Phase Transitions: A Multinational Journal, 47, 183–240 (1994)CrossRefGoogle Scholar
  50. [50]
    Sliozberg, Y. R., Andzelm, J. W., Brennan, J. K., Vanlandingham, M. R., Pryamitsyn, V., and Ganesan, V. Modeling viscoelastic properties of triblock copolymers: a DPD simulation study. Journal of Polymer Science Part B: Polymer Physics, 48, 15–25 (2010)CrossRefGoogle Scholar
  51. [51]
    Hirotsu, S. Coexistence of phases and the nature of first-order phase transition in poly-N-isopropylacrylamide gels. Responsive Gels: Volume Transitions II, Springer, Berlin, Heidelberg, 1–26 (1993)Google Scholar
  52. [52]
    Lopez-Leon, T. and Fernandez-Nieves, A. Macroscopically probing the entropic influence of ions: deswelling neutral microgels with salt. Physical Review E, 75, 011801 (2007)CrossRefGoogle Scholar
  53. [53]
    Fernandez-Barbero, A., Fernandez-Nieves, A., Grillo, I., and Lopez-Cabarcos, E. Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Physical Review E, 66, 051803 (2002)CrossRefGoogle Scholar
  54. [54]
    Tanaka, T. and Fillmore, D. J. Kinetics of swelling of gels. The Journal of Chemical Physics, 70, 1214–1218 (1979)CrossRefGoogle Scholar
  55. [55]
    Geissler, E., Bohidar, H. B., and Hecht, A. M. Collective diffusion in semi-dilute gels at the theta temperature. Macromolecules, 18, 949–953 (1985)CrossRefGoogle Scholar
  56. [56]
    Shibayama, M., Morimoto, M., and Nomura, S. J. Phase separation induced mechanical transi- tion of poly (N-isopropylacrylamide) water isochore gels. Macromolecules, 27, 5060–5066 (1994)CrossRefGoogle Scholar
  57. [57]
    Patil, N., Soni, J., Ghosh, N., and De, P. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly (2-(2-methoxyethoxy) ethyl methacrylate): deswelling kinetics probed by quantitative Mueller matrix polarimetry. The Journal of Physical Chemistry B, 116, 13913–13921 (2012)CrossRefGoogle Scholar
  58. [58]
    Hirotsu, S. Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. The Journal of Chemical Physics, 94, 3949–3957 (1991)CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations