Skip to main content
Log in

Fractional-order generalized thermoelastic diffusion theory

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The present work aims to establish a fractional-order generalized themoelastic diffusion theory for anisotropic and linearly thermoelastic diffusive media. To numerically handle the multi-physics problems expressed by a sequence of incomplete differential equations, particularly by a fractional equation, a generalized variational principle is obtained for the unified theory using a semi-inverse method. In numerical implementation, the dynamic response of a semi-infinite medium with one end subjected to a thermal shock and a chemical potential shock is investigated using the Laplace transform. Numerical results, i.e., non-dimensional temperature, chemical potential, and displacement, are presented graphically. The influence of the fractional order parameter on them is evaluated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oriani, R. A. Thermomigration in solid metals. J. Phys. Chem., 30, 339–351 (1969)

    Google Scholar 

  2. Nowacki, W. Dynamical problems of thermoelastic diffusion in elastic solids. Proc. Vib. Prob., 15, 105–128 (1974)

    MATH  Google Scholar 

  3. Kumar, R., Garg, S. K., and Ahuja, S. Propagation of plane waves at the interface of an elastic solid half-space and a microstretch thermoelastic diffusion solid half-space. Lat. Am. J. Solids Stru., 10, 1081–1108 (2013)

    Article  Google Scholar 

  4. Sherief, H. H., Hamza, F. A., and Saleh, H. A. The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci., 42, 591–608 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Load, H. W. and Shulman, Y. A generalized dynamic theory of thermoelasticity. J. Mech. Phys. Solids, 15, 299–309 (1907)

    Google Scholar 

  6. Sherief, H. H. and El-Maghraby, N. M. A thick plate problem in the theory of generalized thermoelastic diffusion. Int. J. Thermophys., 30, 2044–2057 (2009)

    Article  Google Scholar 

  7. Sherief, H. H. and Hussein, E. M. Two-dimensional problem for a half-space with axi-symmetric distribution in the theory of generalized thermoelastic diffusion. Mech. Adv. Mater. Struc., 23, 216–222 (2016)

    Article  Google Scholar 

  8. Xia, R. H., Tian, X. G., and Shen, Y. P. The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity. Int. J. Eng. Sci., 47, 669–679 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Othman, M. I. A., Atwa, S. Y., and Farouk, R. M. The effect of diffusion on two-dimensional problem of generalized thermoelasticity with Green-Naghdi theory. Int. Commun. Heat. Mass, 36, 857–864 (2009)

    Article  Google Scholar 

  10. Ram, P., Sharma, N., and Kumar, R. Thermomechanical response of generalized thermoelastic diffusion with one relaxation time due to time harmonic sources. Iny. J. Therm. Sci., 36, 857–864 (2009)

    Google Scholar 

  11. Kumar, R. and Kansal, T. Propagation of Rayleigh waves on free surface of transversely isotropic generalized thermoelastic diffusion. Appl. Math. Mech. -Engl. Ed., 29(11), 1451–1462 (2008) DOI 10.1007/s10483-008-1106-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Deswal, S. and Choudhary, S. Two-dimensional interactions due to moving load in generalized thermoelastic solid with diffusion. Appl. Math. Mech. -Engl. Ed., 29(2), 207–221 (2008) DOI 10.1007/s10483-008-0208-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Aouadi, M. On thermoelastic diffusion thin plate theory. Appl. Math. Mech.-Engl. Ed., 36(5), 619–632 (2015) DOI 10.1007/s10483-015-1930-7

    Article  MathSciNet  MATH  Google Scholar 

  14. He, T. H., Li, C. L., Shi, S. H., and Ma, Y. B. A two-dimensional generalized thermoelastic diffusion problem for a half-space. Euro. J. Mech-A/Solids, 52, 37–43 (2015)

    Article  Google Scholar 

  15. Li, C. L., Yu, Y. J., and Tian, X. G. Effect of rotation on plane waves of generalized electromagnetothermoelastic with diffusion for a half-space. J. Therm. Stress, 39, 27–43 (2016)

    Article  Google Scholar 

  16. Li, C. L., Guo, H. L., Tian, X., and Tian, X. G. Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock. J. Therm. Stress, 40, 389–401 (2017)

    Article  Google Scholar 

  17. Bai, Z. B. and Lu, H. S. Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl., 311, 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deng, J. Q. and Ma, L. F. Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. Appl. Math. Lett., 23, 676–680 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Su, X. W. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett., 22, 64–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Diethelm, K., Ford, N. J., Freed, A. D., and Luchko, Y. Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng., 194, 743–773 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, W. Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract., 28, 923–929 (2006)

    Article  MATH  Google Scholar 

  22. Chen, W., Sun, H. G., Zhang, X. D., and Korosak, D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl., 59, 1754–1758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, W., Liang, Y. J., Hu, S. A., and Su, H. G. Fractional derivative anomalous diffusion equation modeling prime number distribution. Fract. Calc. Appl. Anal., 18, 789–798 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Suzuki, A., Fomin, S. A., Chugunov, V. A., Niibori, Y., and Hashida, T. Fractional diffusion modeling of heat transfer in porous and fractured media. Int. J. Heat Mass Tran., 103, 611–618 (2016)

    Article  Google Scholar 

  25. Sweilam, N. H., Nagy, A. M., and El-Sayed, A. A. On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind. Journal of King Saud University-Science, 28, 41–47 (2016)

    Article  Google Scholar 

  26. Kumar, R. and Gupta, V. Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with a fractional order derivative. Chin. Phys. B, 22, 074601 (2013)

    Article  Google Scholar 

  27. Liu, X. J., Wang, J. Z., Wang, X. M., and Zhou, Y. H. Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions. Appl. Math. Mech. -Engl. Ed., 35(1), 49–62 (2014) DOI 10.1007/s10483-014-1771-6

    Article  MathSciNet  MATH  Google Scholar 

  28. El-Karamany, A. S. and Ezzat, M. A. On fractional thermoelastisity. Math. Mech. Solids, 16, 334–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. El-Karamany, A. S. and Ezzat, M. A. Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J. Therm. Stress, 34, 264–284 (2011)

    Article  Google Scholar 

  30. Li, C. L., Guo, H. L., and Tian, X. G. A size-dependent generalized thermoelastic diffusion theory and its application. J. Therm. Stress., 40, 603–626 (2017)

    Article  Google Scholar 

  31. Green, A. E. and Lindsay, K. E. Thermoelasticity. J. Elasticity, 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  32. Green, A. E. and Naghdi, P. M. On undamped heat waves in an elastic solid. J. Therm. Stress, 15, 252–264 (1992)

    Article  MathSciNet  Google Scholar 

  33. Green, A. E. and Naghdi, P. M. Thermoelasticity without energy dissipation. J. Elasticity, 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mainardi, F. and Gorenflo, R. On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math., 118, 283–299 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Youssef, H. M. Theory of fractional order generalized thermoelasticity. ASME J. Heat Trans., 132, 6 (2010)

    Article  Google Scholar 

  36. Mitra, K., Kumar, A., Vedavarz, A., and Moallemi, M. K. Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transfer. Trans. ASME, 117, 568–573 (1995)

    Article  Google Scholar 

  37. Ghazizadeh, H. R., Azimi, A., and Maerefat, M. An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation. Int. J. Heat Mass Trans., 55, 2095–2101 (2009)

    Article  Google Scholar 

  38. Kuang, Z. B. Variational principles for generalized thermodiffusion theory in pyroelectricity. Acta Mech., 214, 275–289 (2010)

    Article  MATH  Google Scholar 

  39. He, J. H. Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo. Jet. Eng., 14, 23–28 (1997)

    Google Scholar 

  40. Gurtin, M. E. Variational principles for linear elastodynamics. Arch. Ration. Mech. Anal., 16, 34–50 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  41. He, J. H. Generalized variational principles for thermopiezoelectricity. Arch. Appl. Mech., 72, 248–256 (2002)

    Article  MATH  Google Scholar 

  42. Honig, G. and Hirdes, U. A method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math., 10, 113–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sherief, H. H. and Saleh, H. A. A half-space problem in the theory of generalized thermoelastic diffusion. Int. J. Solids. Struc., 42, 4484–4493 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbo Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Niu, Y. Fractional-order generalized thermoelastic diffusion theory. Appl. Math. Mech.-Engl. Ed. 38, 1091–1108 (2017). https://doi.org/10.1007/s10483-017-2230-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2230-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation