Abstract
The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct numerical simulation (DNS) in a recent study (Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)). In this work, Monte Carlo (MC) simulation of aerosol evolution is carried out along Lagrangian trajectories obtained in the previous simulation, in order to quantify the error of the moment method used in the previous simulation. Moreover, the particle size distribution (PSD), not available in the previous works, is also investigated. Along a fluid parcel moving through the turbulent flow, temperature and vapor concentration exhibit complex fluctuations, triggering complicate aerosol processes and rendering complex PSD. However, the mean PSD is found to be bi-modal in most of the mixing layer except that a tri-modal distribution is found in the turbulent transition region. The simulated PSDs agree with the experiment observations available in the literature. A different explanation on the formation of such PSDs is provided.
Similar content being viewed by others
References
Lesniewski, T. K. and Friedlander, S. K. Particle nucleation and growth in a free turbulent jet. Proceedings of the Royal Society of London, Series A, 454(9), 2477–2504 (1998)
Garmory, A. and Mastorakos, E. Aerosol nucleation and growth in a turbulent jet using the stochastic fields method. Chemical Engineering Science, 63(16), 4079–4089 (2008)
Di Veroli, G. Y. and Rigopoulos, S. Modeling of aerosol formation in a turbulent jet with the transported population balance equation-probability density function approach. Physics of Fluids, 23(4), 043305 (2011)
Zhou, K. and Chan, T. L. Simulation of homogeneous particle nucleation in a free turbulent jet. Aerosol Science and Technology, 45(8), 973–987 (2011)
McGraw, R. Description of aerosol dynamics by the quadrature method of moments. Aerosol Science and Technology, 27(2), 255–265 (1997)
Marchisio, D. L., Vigil, R. D., and Fox, R. O. Quadrature method of moments for agrregationbreakage processes. Journal of Colloid and Interface Science, 258(2), 322–334 (2003)
Attili, A. and Bisetti, F. Application of a robust and efficient Lagrangian particle scheme to soot transport in turbulent flames. Computers and Fluids, 84, 164–175 (2013)
Desjardins, O., Blanquart, G., Balarac, G., and Pitsch, H. High order conservative finite difference scheme for variable density low Mach number turbulent flows. Journal of Computational Physics, 227(15), 7125–7159 (2008)
Kim, J. and Moin, P. Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of Computational Physics, 59(2), 308–323 (1985)
Falgout, R., Jones, J., and Yang, U. The design and implementation of hypre, a library of parallel high performance preconditioners. Numerical Solution of Partial Differential Equations on Parallel Computers (eds. Bruaset, A. M. and Tveito, A.), Springer, Berlin, 267–294 (2006)
Ol’shanskii, M. A. and Staroverov, V. M. On simulation of outflow boundary conditions in finite difference calculations for incompressible fluid. International Journal for Numerical Methods in Fluids, 33(4), 499–534 (2000)
Friedlander, S. K. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd ed., Oxford University Press, New York (2000)
Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)
Yu, M. Z., Lin, J. Z., and Chen, L. H. Nanoparticle coagulation in a planar jet via moment method. Applied Mathematics and Mechanics (English Edition), 28(11), 1445–1453 (2007) DOI 10.1007/s10483-007-1104-8
Yu, M. Z., Lin, J. Z., and Chan, T. L. A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Science and Technology, 42(9), 705–713 (2008)
Yu, M. Z., Lin, J. Z., Jin, H. H., and Jiang, Y. The verification of the Taylor-expansion moment method for the nanoparticle coagulation in the entire size regime due to Brownian motion. Journal of Nanoparticle Research, 13(5), 2007–2020 (2011)
Marchisio, D. L. and Fox, R. O. Solution of population balance equations using the direct quadrature method of moments. Journal of Aerosol Science, 36(1), 43–73 (2005)
Frenklach, M. Method of moments with interpolative closure. Chemical Engineering Science, 57(12), 2229–2239 (2002)
Wright, D. L., Jr. Numerical advection of moments of the particle size distribution in Eulerian models. Journal of Aerosol Science, 38, 352–369 (2007)
Zhou, K., He, Z., Xiao, M., and Zhang, Z. Q. Parallel Monte Carlo simulation of aerosol dynamics. Advances in Mechanical Engineering, 2014, 435936 (2014)
Gillespie, D. T. An exact method for numerically simulating the stochastic coalescence process in a cloud. Journal of the Atmospheric Sciences, 32(10), 1977–1989 (1975)
Zhao, H. B., Zheng, C. G., and Xu, M. H. Multi-Monte-Carlo method for general dynamic equation considering particle coagulation. Applied Mathematics and Mechanics (English Edition), 26(7), 953–962 (2005) DOI 10.1007/BF02464246
Maisels, A., Kruis, F. E., and Fissan, H. Direct simulation Monte Carlo for simultaneous nucleation, coagulation, and surface growth in dispersed systems. Chemical Engineering Science, 59, 2231–2239 (2004)
Smith, M. and Matsoukas, T. Constant-number Monte Carlo simulation of population balance. Chemical Engineering Science, 53, 1777–1786 (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Nos. 11402179 and 11572274)
Rights and permissions
About this article
Cite this article
Zhou, K., Jiang, X., Sun, K. et al. Eulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer. Appl. Math. Mech.-Engl. Ed. 37, 1305–1314 (2016). https://doi.org/10.1007/s10483-016-2134-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10483-016-2134-9