Skip to main content
Log in

Analysis on non-oscillatory singularity behaviors of mode II interface crack tip in orthotropic bimaterial

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The fracture behaviors near the mode II interface crack tip for orthotropic bimaterial are studied. The non-oscillatory field, where the stress singularity exponent is a real number, is discussed by the complex function method and the undetermined coefficient method. From the research fracture problems, the stress functions with ten undetermined coefficients and an unknown singularity exponent are introduced when Δ1 > 0 and Δ2 > 0. By the existence theorem of non-trival solutions for the system of eight homogeneous linear equations, the characteristic equation, the stress singularity exponent, and the discriminating condition of the non-oscillatory singularity are found. By the uniqueness theorem of the solutions for the system of twelve non-homogeneous linear equations with ten unknowns, the ten undermined coefficients in the stress functions are uniquely determined. The definitions of the stress intensity factors are given with the help of one-sided limit, and their theoretical formulae are deduced. The analytic solutions of the stresses near the mode II interface crack tip are derived. The classical results for orthotropic material are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams, M. L. The stresses around a fault or crack in dissimilar media. Bulletin of the Seismological Society of America, 49, 199–204 (1959)

    MathSciNet  Google Scholar 

  2. Sih, G. C. Stress distribution near internal crack tips for longitudinal shear. Journal of Applied Mechanics, 32, 51–58 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. England, A. H. A crack between dissimilar media. Journal of Applied Mechanics, 32, 400–402 (1965)

    Article  Google Scholar 

  4. Erdogan, F. Stress distribution in bonded dissimilar materials with cracks. Journal of Applied Mechanics, 32(3), 403–410 (1965)

    Article  MathSciNet  Google Scholar 

  5. Rice, J. R. and Sih, G. C. Plane problems of crack in dissimilar media. Journal of Applied Mechanics, 32, 418–423 (1965)

    Article  Google Scholar 

  6. Lin, K. Y. and Mar, J. W. Finite element analysis of stress intensity factors for cracks at a bi-material interface. International Journal of Fracture, 12, 521–531 (1976)

    Article  Google Scholar 

  7. Sun, C. T. and Jih, C. J. On stain energy release rates for interfactal cracks in bi-material media. Engineering Facture Mechanics, 28, 13–20 (1987)

    Article  Google Scholar 

  8. Ma, K. P. and Liu, C. T. Semi-weight function on computation of stress intensity factors in dissimilar materials. Applied Mathematics and Mechanics (English Edition), 25(11), 1241–1248 (2004) DOI 10.1007/BF02438279

    Article  MATH  Google Scholar 

  9. Marsavina, L. and Sadowski, T. Stress intensity factors for an interface kinked crack in a bimaterial plate loaded normal to the interfaces. International Journal of Fracture, 145, 237–243 (2007)

    Article  MATH  Google Scholar 

  10. Chen, Y., Qiao, P. Z., Jiang, H. D., and Ren, Q.W. Review on experimental methods and fracture models for bi-material interfaces (in Chinese). Advances in Mechanics, 38, 53–61 (2008)

    Google Scholar 

  11. Li, C., Tie, Y., and Zheng, Y. P. Influence of material characters on bimaterial interfacial crack energy release retes and stress intensity factors (in Chinese). Journal of Mechanical Engineering, 45, 104–108 (2009)

    Article  Google Scholar 

  12. Liu, Y. H., Wu, Z. G., Liang, Y. C., and Liu, X. M. Numerical methods for determination of stress intensity factors of singular stress field. Engineering Fracture Mechanics, 75, 4793–4803 (2008)

    Article  Google Scholar 

  13. Chang, J. and Xu, J. Q. The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface. International Journal of Mechanical Sciences, 49, 888–897 (2007)

    Article  Google Scholar 

  14. Dai, Y. and Ji, X. Researches on stress singulality of interface end and distributive law of interface stress (in Chinese). Science China, Physics, Mechanics & Astronomy, 37, 535–543 (2007)

    Google Scholar 

  15. Zhang, A. B. and Wang, B. L. An opportunistic analysis of the interface crack based on the modified interface dislocation method. International Journal of Solids and Structure, 50, 15–20 (2013)

    Article  Google Scholar 

  16. Comininou, M. The interface crack. Journal of Applied Mechanics, 44, 631–637 (1977)

    Article  Google Scholar 

  17. Dundurs, J. and Gautesen, A. K. An oppportunistic analysis of the interface crack. International Journal of Fracture, 36, 151–159 (1988)

    Article  Google Scholar 

  18. Delale, F. and Erdogan, F. On the mechanical modeling of the interface region in bonded halfplane. Journal of Applied Mechanics, 55, 317–324 (1988)

    Article  Google Scholar 

  19. Zhou, Z. G. and Wang, B. Investigation of the behavior of a Griffith crack at the interface between two dissimilar orthotropic elastic half-planes for the opening crack mode. Applied Mathematics and Mechanics (English Edition), 25(7), 730–740 (2004) DOI 10.1007/BF02437564

    Article  MATH  Google Scholar 

  20. Li, J. L., Zhang, S. Q., and Yang, W. Y. Stress field near interface crack tip of double dissimilar orthotropic composite materials. Applied Mathematics and Mechanics (English Edition), 29(8), 1045–1051 (2008) DOI 10.1007/s10483-008-0808-7

    Article  MATH  Google Scholar 

  21. Wu, Z. G. and Liu, Y. H. Asymptotic fields near an interface corner in orthotropic bi-materials. International Journal of Fracture, 156, 37–51 (2009)

    Article  MATH  Google Scholar 

  22. Yang, W. Y., Zhang, S. Q., Li, J. L., and Zhang, X. X. Interface crack problem for mode II of double dissimilar orthotropic composite materials. Applied Mathematics and Mechanics (English Edition), 30(5), 585–594 (2009) DOI 10.1007/s10483-009-1202-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, X. X., Cui, X. C., Yang, W. Y., and Li, J. L. Crack-tip field on mode II interface crack of double dissimilar orthotropic composite materials. Applied Mathematics and Mechanics (English Edition), 30(12), 1489–1504 (2009) DOI 10.1007/s10483-009-1202-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, X. M., Yang, W. Y., Li, J. L., and Zhang, X. X. Fracture analysis near the interface crack tip for mode I of orthotropic biomaterial. Science China Physics, Mechanics and Astronomy, 56, 785–797 (2013)

    Article  MathSciNet  Google Scholar 

  25. Suo, Z. Singularities, interfaces and cracks in dissimilar anisotropic media. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 427, 331–358 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, X. S. A central crack at the interface between two different orthotropic media for the mode I and mode II. Engineering Fracture Mechanics, 32, 327–333 (1989)

    Article  Google Scholar 

  27. Erdogan, F. and Wu, B. H. Interface crack problems in layered orthotropic materials. Journal of the Mechanics and Physics of Solids, 41, 889–917 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gao, H., Abbudi, M., and Barnett, D. M. Interfacial crack-tip field in anisotropic elastic solids. Journal of the Mechanics and Physics of Solids, 40, 393–416 (1992)

    Article  MATH  Google Scholar 

  29. Lekhnitskii, S. G. Theory of Elasticity of an Anisotropic Elastic Body (in Chinese), Science Press, Beijing, 1–33 (1963)

    MATH  Google Scholar 

  30. Sih, G. C. and Liebowitz, H. Mathematical theories of brittle fracture. Mathematical Fundamentals of Fracture, Academic Press, New York, 89–131 (1971)

    MATH  Google Scholar 

  31. Corten, H. T. Fracture mechanics of composites. Fracture of Nonmetals and Composites, Academic Press, New York, 675–769 (1972)

    Book  Google Scholar 

  32. Sih, G. C. and Chen, E. P. Cracks in composite materials. Mechanics of Fracture, 7, 113–115 (1981)

    MathSciNet  Google Scholar 

  33. Yang, W. Y., Li, J. L., and Zhang, X. X. Method of a Complex Variable for Fracture in Composite Materials (in Chinese), Science Press, Beijing (2005)

    Google Scholar 

  34. Yang, W. Y. and Zhang, S. Q. The analysis about the stress field near model I crack tip in composite material (in Chinese). Journal of Taiyuan Heavy Mechinery Institute, 7, 46–53 (1986)

    Google Scholar 

  35. Yu, J. R. Function of a Complex Variable (in Chinese), People Education Press, Beijing (1979)

    Google Scholar 

  36. Ren, B. S. Advanced Algebra (in Chinese), Advanced Education Press, Beijing (2002)

    Google Scholar 

  37. Baldi, A. Full field methods and residual stress analysis in orthotropic material, II: nonlinear approach. International Journal of Solids and Structures, 44, 8244–8258 (2007)

    Article  MATH  Google Scholar 

  38. Zhang, S. Q. and Yang, W. Y. Prediction of mode I crack propagation direction in carbor-fiber reinforced composite plate. Applied Mathematics and Mechanics (English Edition), 25(6), 714–722 (2004) DOI 10.1007/BF02438215

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiemei Yang.

Additional information

Project supported by the Natural Science Foundation of Shanxi Province (No. 2014011009-2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Yang, W., Li, J. et al. Analysis on non-oscillatory singularity behaviors of mode II interface crack tip in orthotropic bimaterial. Appl. Math. Mech.-Engl. Ed. 37, 1177–1192 (2016). https://doi.org/10.1007/s10483-016-2123-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2123-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation