Skip to main content
Log in

Optimizing progress variable definition in flamelet-based dimension reduction in combustion

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An automated method to optimize the definition of the progress variables in the flamelet-based dimension reduction is proposed. The performance of these optimized progress variables in coupling the flamelets and flow solver is presented. In the proposed method, the progress variables are defined according to the first two principal components (PCs) from the principal component analysis (PCA) or kernel-density-weighted PCA (KEDPCA) of a set of flamelets. These flamelets can then be mapped to these new progress variables instead of the mixture fraction/conventional progress variables. Thus, a new chemistry look-up table is constructed. A priori validation of these optimized progress variables and the new chemistry table is implemented in a CH4/N2/air lift-off flame. The reconstruction of the lift-off flame shows that the optimized progress variables perform better than the conventional ones, especially in the high temperature area. The coefficient determinations (R2 statistics) show that the KEDPCA performs slightly better than the PCA except for some minor species. The main advantage of the KEDPCA is that it is less sensitive to the database. Meanwhile, the criteria for the optimization are proposed and discussed. The constraint that the progress variables should monotonically evolve from fresh gas to burnt gas is analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Y c :

progress variable

Y c0 :

original progress variable

Z :

mixture fraction

Y c1 :

first principal component (PC) from PC analysis (PCA)

Y c2 :

second PC from PCA

Y c1,K :

first PC from kernel-density-weighted PCA (KEDPCA)

Y c2,K :

second PC from KEDPCA

T :

temperature

Y :

species mass fraction

N :

number of points

Q :

number of thermo-chemical parameters

X :

original database

X :

new database

u ij :

coefficients matrix in PCA

C Pj :

jth PC

d i,j,k :

distance between points

K i,j,k :

Gaussian kernel

Y i,k :

kth parameter at point i

References

  1. Rabitz, H., Kramer, M., and Dacol, D. Sensitivity analysis in chemical kinetics. Annual Review of Physical Chemistry, 34, 419–461 (1983)

    Article  Google Scholar 

  2. Lutz, A. E., Kee, R. J., and Miller, J. A. Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Sandia National Laboratories, Livermere (1988)

    Google Scholar 

  3. Lu, T. and Law, C. K. A directed relation graph method for mechanism reduction. Proceedings of the Combustion Institute, 30, 1333–1341 (2005)

    Article  Google Scholar 

  4. Sun, W., Chen, Z., and Gou, X. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms. Combustion and Flame, 157, 1298–1307 (2010)

    Article  Google Scholar 

  5. Rao, C. V. and Arkin, A. P. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the gillespie algorithm. The Journal of Chemical Physics, 118, 4999–5010 (2003)

    Article  Google Scholar 

  6. Rein, M. The partial equilibrium approximation in reacting flows. Physics of Fluids, A: Fluid Dynamics, 4, 873–886 (1992)

    Article  MATH  Google Scholar 

  7. Pierce, C. D. and Moin, P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 504, 73–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Vreman, A., Albrecht, B., and van Oijen, J. Premixed and nonpremixed generated manifolds in large-eddy simulation of sandia flame d and f. Combustion and Flame, 153, 394–416 (2008)

    Article  Google Scholar 

  9. Gicquel, O., Darabiha, N., and Thévenin, D. Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute, 28, 1901–1908 (2000)

    Article  Google Scholar 

  10. Bilger, R. W., Pope, S. B., and Bray, K. N. C. Paradigms in turbulent combustion research. Proceedings of the Combustion Institute, 30, 21–42 (2005)

    Article  Google Scholar 

  11. Vegendla, S. N. P. and Hasse, C. Steady flamelet progress-variable (FPV) modeling and simulation of a high-pressure gasifier. Energy and Fuels, 27, 7772–7777 (2013)

    Article  Google Scholar 

  12. Vegendla, S., Messig, D., and Weise, S. Flamelet-based time-scale analysis of a high-pressure gasifier. Energy and Fuels, 25, 3892–3899 (2011)

    Article  Google Scholar 

  13. Yilmaz, B., Ozdogan, S., and Gokalp, I. Numerical study on flame-front characteristics of conical turbulent lean premixed methane/air flames. Energy and Fuels, 23, 1843–1848 (2008)

    Article  Google Scholar 

  14. Albrecht, B., Zahirovic, S., and Bastiaans, R. A premixed flamelet-PDF model for biomass combustion in a grate furnace. Energy and Fuels, 22, 1570–1580 (2008)

    Article  Google Scholar 

  15. Ihme, M. and See, Y. C. LES flamelet modeling of a three-stream mild combustor: analysis of flame sensitivity to scalar inflow conditions. Proceedings of the Combustion Institute, 33, 1309–1317 (2011)

    Article  Google Scholar 

  16. Vervisch, L., Hauguel, R., and Domingo, P. Three facets of turbulent combustion modelling: DNS of premixed v-flame, LES of lifted nonpremixed flame and RANS of jet-flame. Journal of Turbulence, 5, 1–8 (2004)

    Article  Google Scholar 

  17. Ihme, M., Shunn, L., and Zhang, J. Regularization of reaction progress variable for application to flamelet-based combustion models. Journal of Computational Physics, 231, 7715–7721 (2012)

    Article  Google Scholar 

  18. Niu, Y. S., Vervisch, L., and Tao, P. D. An optimization-based approach to detailed chemistry tabulation: automated progress variable definition. Combustion and Flame, 160, 776–785 (2013)

    Article  Google Scholar 

  19. Farcy, B., Abou-Taouk, A., Vervisch, L., Domingo, P., and Perret, N. Two approaches of chemistry downsizing for simulating selective noncatalytic reduction DeNOx process. Fuel, 118, 291–299 (2014)

    Article  Google Scholar 

  20. Ribert, G., Vervisch, L., and Domingo, P. Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames. Flow, Turbulence and Combustion, 92, 175–200 (2014)

    Article  Google Scholar 

  21. Abdi, H. and Williams, L. J. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433–459 (2010)

    Article  Google Scholar 

  22. Moore, B. Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Transactions on Automatic Control, 26, 17–32 (1981)

    Article  MATH  Google Scholar 

  23. Parente, A., Sutherland, J. C., and Tognotti, L. Identification of low-dimensional manifolds in turbulent flames. Proceedings of the Combustion Institute, 32, 1579–1586 (2009)

    Article  Google Scholar 

  24. Parente, A., Sutherland, J., and Dally, B. B. Investigation of the mild combustion regime via principal component analysis. Proceedings of the Combustion Institute, 33, 3333–3341 (2011)

    Article  Google Scholar 

  25. Sutherland, J. C. and Parente, A. Combustion modeling using principal component analysis. Proceedings of the Combustion Institute, 32, 1563–1570 (2009)

    Article  Google Scholar 

  26. Isaac, B., Parente, A., Smith, P., Fru, G., and Thevenin, D. Source term parameterization for PCA combustion modelling. Proceedings of the European Combustion Meeting, Lund University Press, Sweden (2013)

    Google Scholar 

  27. Biglari, A. and Sutherland, J. C. A filter-independent model identification technique for turbulent combustion modeling. Combustion and Flame, 159, 1960–1970 (2012)

    Article  Google Scholar 

  28. Coussement, A., Gicquel, O., and Parente, A. MG-local-PCA method for reduced order combustion modeling. Proceedings of the Combustion Institute, 34, 1117–1123 (2013)

    Article  Google Scholar 

  29. Najafi-Yazdi, A., Cuenot, B., and Mongeau, L. Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation. Combustion and Flame, 159, 1197–1204 (2012)

    Article  Google Scholar 

  30. Coussement, A., Gicquel, O., and Parente, A. Kernel density weighted principal component analysis of combustion processes. Combustion and Flame, 159, 2844–2855 (2012)

    Article  Google Scholar 

  31. Mirgolbabaei, H., Echekki, T., and Smaoui, N. A nonlinear principal component analysis approach for turbulent combustion composition space. International Journal of Hydrogen Energy, 39, 4622–4633 (2014)

    Article  Google Scholar 

  32. Schlkopf, B., Smola, A., and Mjller, K. R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299–1319 (1998)

    Article  Google Scholar 

  33. Parzen, E. On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schlkopf, B., Tsuda, K., and Vert, J. P. Kernel Methods in Computational Biology, MIT Press, Cambridge (2004)

    Google Scholar 

  35. Silverman, B. W. Density Estimation for Statistics and Data Analysis, CRC Press, Boca Raton, Florida (1986)

    Book  MATH  Google Scholar 

  36. Jha, P. K. and Groth, C. P. T. Tabulated chemistry approaches for laminar flames: evaluation of flame-prolongation of ILDM and flamelet methods. Combustion Theory and Modelling, 16, 31–57 (2011)

    Article  Google Scholar 

  37. Bennett, B. A. V., Mcenally, C. S., Pfefferle, L. D., and Smooke, M. D. Computational and experimental study of axisymmetric coflow partially premixed methane/air flames. Combustion and Flame, 123, 522–546 (2000)

    Article  Google Scholar 

  38. Schwer, D. A., Lu, P., and Green, W. H., An adaptive chemistry approach to modeling complex kinetics in reacting flows. Combustion and Flame, 133, 451–465 (2003)

    Article  Google Scholar 

  39. Ray, J., Najm, H, N., and Mildne, R. B. Triple flame structure and dynamics at the stabilization point of an unsteady lifted jet diffusion flame. Proceedings of the Combustion Institute, 28, 219–226 (2000)

    Article  Google Scholar 

  40. Grtzbach, G. Spatial resolution requirements for direct numerical simulation of the Rayleigh-BWnard convection. Journal of Computational Physics, 49, 241–264 (1983)

    Article  Google Scholar 

  41. Smith, G. P., Golden, D. M., and Frenklach, M. GRI-MECH: an Optimized Detailed Chemical Reaction Mechanism for Methane Combustion, Sandia National Laboratories Report, SAND-89-8009B, New Mexico (1999)

    Google Scholar 

  42. Kee, R. J., Rupley, F. M., and Meeks, E. Chemkin-III: a FORTRAN Chemical Kinetics Package for the Analysis of Gas-phase Chemical and Plasma Kinetics, Sandia National Laboratories, New Mexico (1996)

    Book  Google Scholar 

  43. Bilger, R. W., Starner, S. H., and Kee, R. J. On reduced mechanisms for methane air combustion in nonpremixed flames. Combustion and Flame, 80, 135–149 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Chen.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 50936005, 51576182, and 11172296)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, M. & Chen, Y. Optimizing progress variable definition in flamelet-based dimension reduction in combustion. Appl. Math. Mech.-Engl. Ed. 36, 1481–1498 (2015). https://doi.org/10.1007/s10483-015-1997-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1997-7

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation