Flow and heat transfer of nanofluid past stretching/shrinking sheet with partial slip boundary conditions

Abstract

The boundary layer flow of a nanofluid past a stretching/shrinking sheet with hydrodynamic and thermal slip boundary conditions is studied. Numerical solutions to the governing equations are obtained using a shooting method. The results are found for the skin friction coefficient, the local Nusselt number, and the local Sherwood number as well as the velocity, temperature, and concentration profiles for some values of the velocity slip parameter, thermal slip parameter, stretching/shrinking parameter, thermophoresis parameter, and Brownian motion parameter. The results show that the local Nusselt number, which represents the heat transfer rate, is lower for higher values of thermal slip parameter, thermophoresis parameter, and Brownian motion parameter.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Choi, S. U. S. Enhancing thermal conductivity of fluids with nanoparticle. Developments and Applications of Non-Newtonian Flows (eds. Siginer, D. A. and Wang, H. P.), American Society of Mechanical Engineers, Central Michigan University, 99–105 (1995)

    Google Scholar 

  2. [2]

    Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei, 7, 227–233 (1993)

    Article  Google Scholar 

  3. [3]

    Xuan, Y. and Li, Q. Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21, 58–64 (2000)

    Article  Google Scholar 

  4. [4]

    Xuan, Y. and Roetzel, W. Conceptions for heat transfer correlation of nanofluids. International Journal of Heat and Mass Transfer, 43, 3701–3707 (2000)

    Article  MATH  Google Scholar 

  5. [5]

    Rahman, M. M., Al-Lawatia, M. A., Eltayeb, I. A., and Al-Salti, N. Hydromagnetic slip flow of water based nanofluids past a wedge with convective surface in the presence of heat generation (or) absorption. International Journal of Thermal Sciences, 57, 172–182 (2012)

    Article  Google Scholar 

  6. [6]

    Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121, 280–289 (1999)

    Article  Google Scholar 

  7. [7]

    Buongiorno, J. Convective transport in nanofluid. Journal of Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  8. [8]

    Nield, D. A. and Kuznetsov, A. V. The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer, 52, 5792–5795 (2009)

    Article  MATH  Google Scholar 

  9. [9]

    Nield, D. A. and Kuznetsov, A. V. The Cheng-Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer, 54, 374–378 (2011)

    Article  MATH  Google Scholar 

  10. [10]

    Kuznetsov, A. V. and Nield, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49, 243–247 (2010)

    Article  Google Scholar 

  11. [11]

    Kuznetsov, A. V. and Nield, D. A. Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 50, 712–717 (2011)

    Article  Google Scholar 

  12. [12]

    Khan, W. A. and Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  13. [13]

    Makinde, O. D. and Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences, 50, 1326–1332 (2011)

    Article  Google Scholar 

  14. [14]

    Fischer, E. G. Extrusion of Plastics, Wiley, New York (1976)

    Google Scholar 

  15. [15]

    Crane, L. J. Flow past a stretching plate. Journal of Applied Mathematics and Physics, 21, 645–647 (1970)

    Article  Google Scholar 

  16. [16]

    Wang, C. Y. Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Analysis: Real World Applications, 10, 375–380 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    Salari, M., Mohammadtabar, M., and Mohammadtabar, A. Numerical solutions to heat transfer of nanofluid flow over stretching sheet subjected to variations of nanoparticle volume fraction and wall temperature. Appl. Math. Mech. -Engl. Ed., 35, 63–72 (2014) DOI 10.1007/s10483-014-1772-8

    MathSciNet  Article  Google Scholar 

  18. [18]

    Mastroberardino, A. Accurate solutions for viscoelastic boundary layer flow and heat transfer over stretching sheet. Appl. Math. Mech. -Engl. Ed., 35, 133–142 (2014) DOI 10.1007/s10483-014-1778-7

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    Ali, F. M., Nazar, R., Arifin, N. M., and Pop I. Mixed convection stagnation-point flow on vertical stretching sheet with external magnetic field. Appl. Math. Mech. -Engl. Ed., 35, 155–166 (2014) DOI 10.1007/s10483-014-1780-8

    MathSciNet  Article  Google Scholar 

  20. [20]

    Miklavčič, M. and Wang, C. Y. Viscous flow due to a shrinking sheet. Quarterly of Applied Mathematics, 64, 283–290 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    Wang, C. Y. Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics, 43, 377–382 (2008)

    Article  Google Scholar 

  22. [22]

    Fang, T., Yao, S., Zhang, J., and Aziz, A. Viscous flow over a shrinking sheet with a second order slip flow model. International Journal of Non-Linear Mechanics, 15, 1831–1842 (2010)

    MathSciNet  MATH  Google Scholar 

  23. [23]

    Bhattacharyya, K., Mukhopadhyay, S., and Layek, G. C. Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet. International Journal of Heat and Mass Transfer, 54, 308–313 (2011)

    Article  MATH  Google Scholar 

  24. [24]

    Weidman, P. D., Kubitschek, D. G., and Davis, A. M. J. The effect of transpiration on selfsimilar boundary layer flow over moving surfaces. International Journal of Engineering Science, 44, 730–737 (2006)

    Article  MATH  Google Scholar 

  25. [25]

    Postelnicu, A. and Pop, I. Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge. Applied Mathematics and Computation, 217, 4359–4368 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    Roşca, A. V. and Pop, I. Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip. International Journal of Heat and Mass Transfer, 60, 355–364 (2013)

    Article  Google Scholar 

  27. [27]

    Kumaran, V. and Pop, I. Nearly parallel Blasius flow with slip. Communications in Nonlinear Science and Numerical Simulation, 16, 4619–4624 (2011)

    Article  MATH  Google Scholar 

  28. [28]

    Wang, C. Y. Flow due to a stretching boundary with partial slip—an exact solution of the Navier-Stokes equations. Chemical Engineering Science, 57, 3745–3747 (2002)

    Article  Google Scholar 

  29. [29]

    Noghrehabadi, A., Pourrajab, R., and Ghalambaz, M. Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. International Journal of Thermal Sciences, 54, 253–261 (2012)

    Article  Google Scholar 

  30. [30]

    Sharma, R., Ishak, A., and Pop, I. Partial slip flow and heat transfer over a stretching sheet in a nanofluid. Mathematical Problems in Engineering, 7, 724547 (2013)

    MathSciNet  Google Scholar 

  31. [31]

    Aman, F., Ishak, A., and Pop, I. Mixed convection boundary layer flow near stagnation-point on vertical surface with slip. Appl. Math. Mech. -Engl. Ed., 32, 1599–1606 (2011) DOI 10.1007/s10483-011-1526-x

    MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    Buongiorno, J., and Hu, W. Nanofluid coolants for advanced nuclear power plants. Proceedings of ICAPP’ 05, Seoul (2005)

    Google Scholar 

  33. [33]

    Khan, W. A., Uddin, M. J., and Ismail, A. I. M. Hydrodynamic and thermal slip effect on double-diffusive free convective boundary layer flow of a nanofluid past a flat vertical plate in the moving free stream. PLOS ONE, 8, e54024 (2013)

    Article  Google Scholar 

  34. [34]

    Bachok, N., Ishak, A., and Pop, I. Flow and heat transfer characteristics on a moving plate in a nanofluid. International Journal of Heat and Mass Transfer, 55, 642–648 (2012)

    Article  MATH  Google Scholar 

  35. [35]

    Fang, T. and Zhang, J. Thermal boundary layers over a shrinking sheet: an analytical solution. Acta Mechanica, 209, 325–343 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ishak.

Additional information

Project supported by the Ministry of Higher Education in Malaysia (No. FRGS/1/2012/SG04/UKM/2001/1) and the Universiti Kebangsaan Malaysia (No. DIP-2012-31)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mansur, S., Ishak, A. & Pop, I. Flow and heat transfer of nanofluid past stretching/shrinking sheet with partial slip boundary conditions. Appl. Math. Mech.-Engl. Ed. 35, 1401–1410 (2014). https://doi.org/10.1007/s10483-014-1878-7

Download citation

Key words

  • boundary layer
  • heat transfer
  • nanofluid
  • stretching/shrinking
  • dual solution

Chinese Library Classification

  • O241

2010 Mathematics Subject Classification

  • 76D10
  • 34B15