Skip to main content
Log in

Self-similar behavior for multicomponent coagulation

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Self-similar behavior for the multicomponent coagulation system is investigated analytically in this paper. Asymptotic self-similar solutions for the constant kernel, sum kernel, and product kernel are achieved by introduction of different generating functions. In these solutions, two size-scale variables are introduced to characterize the asymptotic distribution of total mass and individual masses. The result of product kernel (gelling kernel) is consistent with the Vigli-Ziff conjecture to some extent. Furthermore, the steady-state solution with injection for the constant kernel is obtained, which is again the product of a normal distribution and the scaling solution for the single variable coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smoluchowski, M. V. Drei vortrage uber diffusion, brownsche molekular bewegung und koagulation von kolloidteilchen. Zeitschrift für Physik, 17, 557–585 (1916)

    Google Scholar 

  2. Friedlander, S. K. Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics, Oxford University Press, Oxford (2000)

    Google Scholar 

  3. Silk, J. and White, S. D. The development of structure in the expanding universe. Astrophysical Journal, 223, 59–62 (1978)

    Article  Google Scholar 

  4. Ziff, R. M. Kinetics of polymerization. Journal of Statistical Physics, 23, 241–263 (1980)

    Article  MathSciNet  Google Scholar 

  5. Niwa, H. S. School size statistics of fish. Journal of Theoretical Biology, 195, 351–361 (1998)

    Article  Google Scholar 

  6. Kiorboe, T. Formation and fate of marine snow: small-scale processes with large-scale implications. Scientia Marina, 66, 67–71 (2001)

    Google Scholar 

  7. Yu, F. G. and Turko, R. P. From molecular clusters to nanoparticles: role of ambient ionization in tropospheric aerosol formation. Journal of Geophysical Research: Atmospheres, 106, 4797–4814 (2001)

    Article  Google Scholar 

  8. Zhao, H., Kruis, F. E., and Zheng, C. Monte Carlo simulation for aggregative mixing of nanoparticles in two-component systems. Industrial & Engineering Chemistry Research, 50, 10652–10664 (2011)

    Article  Google Scholar 

  9. Matsoukas, T., Lee, K., and Kim, T. Mixing of components in two-component aggregation. AIChE Journal, 52, 3088–3099 (2006)

    Article  Google Scholar 

  10. Van Dongen, P. G. J. and Ernst, M. H. Scaling solutions of Smoluchowski’s coagulation equation. Journal of Statistical Physics, 50, 295–329 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leyvraz, F. Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Physics Report, 383, 59–219 (2006)

    Google Scholar 

  12. Lushnikov, A. A. Evolution of coagulating systems 3: coagulating mixtures. Journal of Colloid and Interface Science, 54, 94–100 (1976)

    Article  Google Scholar 

  13. Krapivsky, P. L. and Ben-Naim, E. Aggregation with multiple conservation laws. Physical Review E, 53, 291–298 (1996)

    Article  Google Scholar 

  14. Vigil, R. D. and Ziff, R. M. On the scaling theory of two-component aggregation. Chemical Engineering Science, 53, 1725–1729 (1998)

    Article  Google Scholar 

  15. Fernandez-Diaz, J. M. and Gomez-Garcia, G. J. Exact solution of Smoluchowski’s continuous multicomponent equation with an additive kernel. Europhysics Letter, 78, 56002 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fernandez-Diaz, J. M. and Gomez-Garcia, G. J. Exact solution of a coagulation equation with a product kernel in the multicomponent case. Physics D, 239, 279–290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lushnikov, A. A. and Kulmala, M. Singular self-preserving regimes of coagulation processes. Physical Review E, 65, 1–12 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Davies, S. C., King, J. R., and Wattis, J. A. D. The Smoluchowski coagulation equation with continuous injection. Journal of Physics A: Mathematical General, 32, 7745–7763 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chanuhan, S. S., Chakroborty, J., and Kumar, S. On the solution and applicability of bivariate population balance wquations for mixing in particle phase. Chemical Engineering Science, 65, 3914 (2010)

    Article  Google Scholar 

  20. Marshall, C. L., Rajniak, P., and Matsoukas, T. Numerical simulations of two-component granulation: comparison of three methods. Chemical Engineering Research and Design, 89, 545–552 (2010)

    Article  Google Scholar 

  21. Lin, Y., Lee, K., and Matsoukas, T. Solution of the population balance equation using constant-number Monte Carlo. Chemical Engineering Science, 57, 2241 (2002)

    Article  Google Scholar 

  22. Zhao, H., Kruis, F. E., and Zheng, C. A differentially weighted Monte Carlo methods for two-component caogulation. Journal of Computational Physics, 229, 6931–6945 (2010)

    Article  MATH  Google Scholar 

  23. Dabies, S. C., King, J. R., and Wattis, J. A. D. Self-similar behavior in the coagulation equations. Journal of Engineering Mathematics, 36, 57–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-ming Lu  (卢志明).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11272196 and 11222222) and the Zhejiang Association of Science and Technology of Soft Science Research Project (No. ZJKX14C-34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Ml., Lu, Zm. & Liu, Yl. Self-similar behavior for multicomponent coagulation. Appl. Math. Mech.-Engl. Ed. 35, 1353–1360 (2014). https://doi.org/10.1007/s10483-014-1872-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1872-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation