Skip to main content
Log in

Improved modal truncation method for eigensensitivity analysis of asymmetric matrix with repeated eigenvalues

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An improved modal truncation method with arbitrarily high order accuracy is developed for calculating the second- and third-order eigenvalue derivatives and the first- and second-order eigenvector derivatives of an asymmetric and non-defective matrix with repeated eigenvalues. If the different eigenvalues λ 1, λ 2, …, λ r of the matrix satisfy |λ 1| ⩽ … ⩽ |λ r | and |λ s | < |λ s+1| (sr−1), then associated with any eigenvalue λ i (is), the errors of the eigenvalue and eigenvector derivatives obtained by the qth-order approximate method are proportional to |λ i /λ s+1 | q+1, where the approximate method only uses the eigenpairs corresponding to λ 1, λ 2, …, λ s . A numerical example shows the validity of the approximate method. The numerical example also shows that in order to get the approximate solutions with the same order accuracy, a higher order method should be used for higher order eigenvalue and eigenvector derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Y. Q., Liu, Z. S., Chen, S. H., and Zhang, G. Y. An accurate modal truncation method for eigenvector derivatives. Computers & Structures, 73(6), 609–614 (1999)

    Article  MATH  Google Scholar 

  2. Nelson, R. B. Simplified calculation of eigenvector derivatives. AIAA Journal, 14(9), 1201–1205 (1976)

    Article  MATH  Google Scholar 

  3. Ojalvo, I. U. Efficient computation of modal sensitivities for systems with repeated frequencies. AIAA Journal, 26(3), 361–366 (1988)

    Article  MATH  Google Scholar 

  4. Mills-Curran, W. C. Calculation of eigenvector derivatives for structures with repeated eigenvalues. AIAA Journal, 26(7), 867–871 (1988)

    Article  MATH  Google Scholar 

  5. Dailey, R. L. Eigenvector derivatives with repeated eigenvalues. AIAA Journal, 27(4), 486–491 (1989)

    Article  MathSciNet  Google Scholar 

  6. Friswell, M. I. Calculation of 2nd-order and higher-order eigenvector derivatives. Journal of Guidance, Control and Dynamics, 18(4), 919–921 (1995)

    Article  MATH  Google Scholar 

  7. Friswell, M. I. The derivatives of repeated eigenvalues and their associated eigenvectors. Journal of Vibration and Acoustics-Transactions of the ASME, 118(3), 390–397 (1996)

    Article  Google Scholar 

  8. Lee, I. W., Jung, G. H., and Lee, J. W. Numerical method for sensitivity analysis of eigensystems with non-repeated and repeated eigenvalues. Journal of Sound and Vibration, 195(1), 17–32 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lee, I. W. and Jung, G. H. An efficient algebraic method for the computation of natural frequency and mode shape sensitivities, 1: distinct natural frequencies. Computers & Structures, 62(3), 429–435 (1997)

    Article  MATH  Google Scholar 

  10. Lee, I. W. and Jung, G. H. An efficient algebraic method for the computation of natural frequency and mode shape sensitivities, 2: multiple natural frequencies. Computers & Structures, 62(3), 437–443 (1997)

    Article  Google Scholar 

  11. Wei, F. S. and Zhang, D. W. Eigenvector derivatives with repeated eigenvalues using generalized inverse technique. AIAA Journal, 34(10), 2206–2209 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lee, I. W., Kim, D. O., and Jung, G. H. Natural frequency and mode shape sensitivities of damped systems: part I, distinct natural frequencies. Journal of Sound and Vibration, 223(3), 399–412 (1999)

    Article  Google Scholar 

  13. Lee, I. W., Kim, D. O., and Jung, G. H. Natural frequency and mode shape sensitivities of damped systems: part II, multiple natural frequencies. Journal of Sound and Vibration, 223(3), 413–424 (1999)

    Article  Google Scholar 

  14. Choi, K. M., Jo, H. K., Kim, W. H., and Lee, I. W. Sensitivity analysis of non-conservative eigensystems. Journal of Sound and Vibration, 274(3–5), 997–1011 (2004)

    Article  Google Scholar 

  15. Choi, K. M., Cho, S. W., Ko, M. G., and Lee, I. W. Higher order eigensensitivity analysis of damped systems with repeated eigenvalues. Computers & Structures, 82(1), 63–69 (2004)

    Article  Google Scholar 

  16. Liu, J. K. Universal perturbation technique for reanalysis of non-self-adjoint systems. AIAA Journal, 38(6), 1035–1039 (2000)

    Article  Google Scholar 

  17. Adhikari, S. and Friswell, M. I. Calculation of eigensolution derivatives for nonviscously damped systems using Nelson’s method. AIAA Journal, 44(8), 1799–1806 (2006)

    Article  Google Scholar 

  18. Najeh, G., Hichem, S., and Mnaouar, C. A direct algebraic method for eigensolution sensitivity computation of damped asymmetric systems. International Journal for Numerical Methods in Engineering, 68(6), 674–689 (2006)

    Article  MATH  Google Scholar 

  19. Najeh, G., Mnaouar, C., and Hichem, S. Second-order eigensensitivity analysis of asymmetric damped systems using Nelson’s method. Journal of Sound and Vibration, 300(3–5), 974–992 (2007)

    Google Scholar 

  20. Xu, Z. H., Zhong, H. X., Zhu, X. W., and Wu, B. S. An efficient algebraic method for computing eigensolution sensitivity of asymmetric damped systems. Journal of Sound and Vibration, 327(3–5), 584–592 (2009)

    Article  Google Scholar 

  21. Luongo, A. Eigensolutions sensitivity for nonsymmetric matrices with repeated eigenvalues. AIAA Journal, 31(7), 1321–1328 (1993)

    Article  MATH  Google Scholar 

  22. Zhang, Z. Y. and Zhang, H. S. Eigensensitivity analysis of a defective matrix. AIAA Journal, 39(3), 473–479 (2001)

    Article  Google Scholar 

  23. Zhang, Z. Y. and Zhang, H. S. Higher-order eigensensitivity analysis of a defective matrix. AIAA Journal, 40(4), 751–757 (2002)

    Article  Google Scholar 

  24. Zhang, Z. Y. and Zhang, H. S. Eigensensitivity analysis of defective matrix with zero first-order eigenvalue derivatives. AIAA Journal, 42(1), 114–123 (2004)

    Article  Google Scholar 

  25. Fox, R. L. and Kapoor, M. P. Rates of change eigenvalues and eigenvectors. AIAA Journal, 6(12), 2426–2429 (1968)

    Article  MATH  Google Scholar 

  26. Murthy, D. V. and Haftka, R. T. Derivatives of eigenvalues and eigenvectors of a general complex matrix. International Journal for Numerical Methods in Engineering, 26(2), 293–311 (1998)

    Article  MathSciNet  Google Scholar 

  27. Juang, J. N., Ghaemmaghami, P., and Lim, K. B. Eigenvalue and eigenvector derivatives of a nondefective matrix. Journal of Guidance, Control and Dynamics, 12(4), 480–486 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Bernard, M. L. and Bronowicki, A. J. Modal expansion method for eigensensitivity with repeated roots. AIAA Journal, 32(7), 1500–1506 (1994)

    Article  MATH  Google Scholar 

  29. Zhang, D. W. and Wei, F. S. Computation of eigenvector derivatives with repeated eigenvalues using a complete modal space. AIAA Journal, 33(9), 1749–1753 (1995)

    Article  MATH  Google Scholar 

  30. Adhikari, S. and Friswell, M. I. Eigenderivative analysis of asymmetric non-conservative systems. International Journal for Numerical Methods in Engineering, 51(6), 709–733 (2001)

    Article  MATH  Google Scholar 

  31. Adhikari, S. Derivative of eigensolutions of nonviscously damped linear systems. AIAA Journal, 30(10), 2061–2069 (2002)

    Article  Google Scholar 

  32. Zhang, Z. Y. and Zhang, H. S. Calculation of eigenvalue and eigenvector derivatives of a defective matrix. Applied Mathematics and Computation, 176(1), 7–26 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang, Z. Y. A development of modal expansion method for eigensensitivity analysis of a defective matrix. Applied Mathematics and Computation, 188(2), 1995–2019 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang, B. P. Improved approximate methods for computing eigenvector derivatives in structural dynamics. AIAA Journal, 29(6), 1018–1020 (1991)

    Article  Google Scholar 

  35. Zeng, Q. H. Highly accurate modal method for calculating eigenvector derivatives in viscous damping systems. AIAA Journal, 33(4), 746–751 (1995)

    Article  MATH  Google Scholar 

  36. Kim, Y., Lee, S., and Junkins, J. L. Eigenvector derivatives for mechanical 2nd-order systems. Journal of Guidance, Control and Dynamics, 18(4), 899–906 (1995)

    Article  MATH  Google Scholar 

  37. Moon, Y. J., Kim, B. W., Ko, M. G., and Lee, I. W. Modified modal methods for calculating eigenpair sensitivity of asymmetric damped system. International Journal for Numerical Methods in Engineering, 66(11), 1847–1860 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-yu Zhang  (张振宇).

Additional information

Project supported by the National Natural Science Foundation of China (No. 11101149) and the Basic Academic Discipline Program of Shanghai University of Finance and Economics (No. 2013950575)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zy. Improved modal truncation method for eigensensitivity analysis of asymmetric matrix with repeated eigenvalues. Appl. Math. Mech.-Engl. Ed. 35, 437–452 (2014). https://doi.org/10.1007/s10483-014-1803-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1803-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation