Skip to main content
Log in

Thermal analysis of annular fins with temperature-dependent thermal properties

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The thermal analysis of the annular rectangular profile fins with variable thermal properties is investigated by using the homotopy analysis method (HAM). The thermal conductivity and heat transfer coefficient are assumed to vary with a linear and power-law function of temperature, respectively. The effects of the thermal-geometric fin parameter and the thermal conductivity parameter variations on the temperature distribution and fin efficiency are investigated for different heat transfer modes. Results from the HAM are compared with numerical results of the finite difference method (FDM). It can be seen that the variation of dimensionless parameters has a significant effect on the temperature distribution and fin efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kraus, A. D., Aziz, A., and Welty, J. Extended Surface Heat Transfer, Wiley, New York (2001)

    Google Scholar 

  2. Aziz, A. and Enamul Hug, S. M. Perturbation solution for convecting fin with variable thermal conductivity. ASME Journal of Heat Transfer, 97, 300–301 (1975)

    Article  Google Scholar 

  3. Ganji, D. D., Ganji, Z. Z., and Ganji, H. D. Determination of temperature distribution for annular fins with temperature dependent thermal conductivity by HMP. Thermal Science, 15(1), 111–115 (2011)

    Google Scholar 

  4. Kim, S. and Huang, C. H. A series solution of the non-linear fin problem with temperature dependent thermal conductivity and heat transfer coefficient. Journal of Physics D: Applied Physics, 40(9), 2979–2987 (2007)

    Article  Google Scholar 

  5. Bouaziz, M. N. and Aziz, A. Simple and accurate solution for convective adiative fin with temperature dependent thermal conductivity using double optimal linearization. Energy Conversion and Management, 51, 2776–2782 (2010)

    Article  Google Scholar 

  6. Ganji, D. D., Rahimi, M., Rahgoshay, M., Jafari, M., and Babaelahi, M. Analytical and numerical investigation of fin efficiency and temperature distribution of conductive, convective, and radiative straight fins. Heat Transfer-Asian Research, 40(3), 233–245 (2011)

    Article  Google Scholar 

  7. Chang, M. H. Decomposition solution for fins with temperature dependent surface heat flux. International Journal of Heat Mass Transfer, 48(9), 1819–1824 (2005)

    Article  MATH  Google Scholar 

  8. Liao, S. J. Homotopy analysis method: a new analytical technique for nonlinear problems. Communications in Nonlinear Science and Numerical Simulation, 2(2), 95–100 (1997)

    Article  Google Scholar 

  9. Liao, S. Homotopy analysis method: a new analytical method for nonlinear problems. Applied Mathematics and Mechanics (English Edition), 19(10), 957–962 (1998) DOI 10.1007/BF02457955

    Article  MathSciNet  MATH  Google Scholar 

  10. Liao, S. J. Beyond Perturbation: Introduction to the Homotopy Analysis Methods, Chapman and Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  11. Liao, S. J. On the homotopy analysis method for nonlinear problems. Applied Mathematics and Computation, 147(2), 499–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liao, S. J. Comparison between the homotopy analysis method and homotopy perturbation method. Applied Mathematics and Computation, 169(2), 1186–1194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liao, S. J. and Tan, Y. A general approach to obtain series solutions of nonlinear differential equations. Studies in Applied Mathematics, 119(4), 297–354 (2007)

    Article  MathSciNet  Google Scholar 

  14. Liao, S. J. Notes on the homotopy analysis method: some definitions and theorems. Communications in Nonlinear Science and Numerical Simulation, 14(4), 983–997 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Inc, M. Application of homotopy analysis method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Mathematics and Computers in Simulation, 79(2), 189–200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Arslantürk, C. Analysis of thermal performance of annular fins with variable thermal conductivity by homotopy analysis method. Journal of Thermal Science Technology, 30(2), 1–7 (2010)

    Google Scholar 

  17. Khani, F. and Aziz, A. Thermal analysis of a longitudinal fin with temperature-dependent thermal conductivity and heat transfer coefficient. Communications in Nonlinear Science and Numerical Simulation, 15(3), 590–601 (2010)

    Article  Google Scholar 

  18. Chowdhury, M. S. H., Hashim, I., and Abdulaziz, O. Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems. Communications in Nonlinear Science and Numerical Simulation, 14(2), 371–378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khani, F., Raji, M. A., and Nejad, H. H. Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. Communications in Nonlinear Science and Numerical Simulation, 14(8), 3327–3338 (2009)

    Article  MATH  Google Scholar 

  20. Molabahrami, A. and Khani, F. The homotopy analysis method to solve the Burgers-Huxley equation. Nonlinear Analysis: Real World Applications, 10(2), 589–600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Aksoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksoy, I.G. Thermal analysis of annular fins with temperature-dependent thermal properties. Appl. Math. Mech.-Engl. Ed. 34, 1349–1360 (2013). https://doi.org/10.1007/s10483-013-1750-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1750-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation