Skip to main content
Log in

Numerical and analytical investigations of thermosolutal instability in rotating Rivlin-Ericksen fluid in porous medium with Hall current

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Numerical and analytical investigations of the thermosolutal instability in a viscoelastic Rivlin-Ericksen fluid are carried out in the presence of a uniform vertical magnetic field to include the Hall current with a uniform angular velocity in a porous medium. For stationary convection, the stable solute gradient parameter and the rotation have stabilizing effects on the system, whereas the magnetic field and the medium permeability have stabilizing or destabilizing effects on the system under certain conditions. The Hall current in the presence of rotation has stabilizing effects for sufficiently large Taylor numbers, whereas in the absence of rotation, the Hall current always has destabilizing effects. These effects have also been shown graphically. The viscoelastic effects disappear for stationary convection. The stable solute parameter, the rotation, the medium permeability, the magnetic field parameter, the Hall current, and the vis-coelasticity introduce oscillatory modes into the system, which are non-existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

depth of the fluid layer, m

e :

charge of an electron, C

F :

dimensionless kinematic viscoelasticity

g :

acceleration due to gravity, m·s−2

Ω :

rotation vector

H :

magnetic field vector

h :

perturbation in H

k :

wavenumber of the disturbance, m−1

k x , k y :

wavenumbers in the x- and y-directions

M :

dimensionless Hall current parameter

n :

growth rate of the disturbance, s−1

N e :

electron number density, m−3

p :

fluid pressure, Pa

p 1 :

thermal Prandtl number

p 2 :

magnetic Prandtl number

Sc :

Schmidt number

S :

analogous solute Rayleigh number

T A :

Taylor number

K :

z-component of the magnetic field after applying normal mode analysis

Z :

z-component of the vorticity after applying normal mode analysis

X :

z-component of the current density after applying normal mode analysis

Q :

dimensionless Chandrasekhar number

Ra :

dimensionless Rayleigh number

T :

temperature

q :

fluid velocity vector, m·s−1

x 0 :

wavenumer, m−1

α :

thermal coefficient of expansion, K−1

α′:

solvent coefficient of expansion, K−1

β :

temperature gradient, K·m−1

β′:

solvent gradient, K·m−1

:

curly operator

∇:

del operator

δ :

perturbation in the respective physical quantity

η′:

particle radius, m

η :

resistivity, m2·s−1

θ :

perturbation in temperature, K

κ :

thermal diffusivity, m2·s−1

κ′:

solute diffusivity, m2·s−1

µ:

viscosity of the fluid, kg·m−1·s−1

µ′:

viscoelasticity of the fluid, kg·m−1·s−1

µe :

magnetic permeability, H·m−1

ν :

kinematic viscosity, m2·s−1

ν′:

kinematic viscoelasticity, m2·s−1

ρ :

density of the fluid, kg·m−3

References

  1. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York (1981)

    Google Scholar 

  2. Brandt, H. and Fernando, H. J. S. Double-Diffusive Convection, American Geophysical Union Monograph, Washington, D.C. (1996)

    Google Scholar 

  3. Veronis, G. On finite amplitude instability in thermohaline convection. Journal of Marine Research, 23, 1–17 (1965)

    Google Scholar 

  4. Nield, D. A. The thermohaline Rayleigh-Jeffreys problem. Journal of Fluid Mechanics, 29, 545–558 (1967)

    Article  Google Scholar 

  5. Nield, D. A. Onset of thermohaline convection in porous medium. Water Resources Research, 4, 553–560 (1965)

    Article  Google Scholar 

  6. Tabor, H. and Matz, R. Solar pond project. Solar Energy, 9, 177–180 (1965)

    Article  Google Scholar 

  7. Shirtcliffe, T. G. L. Lake Bonney, Antarctica: cause of the elevated temperatures. Journal of Geophysical Research, 69, 5257–5268 (1964)

    Article  Google Scholar 

  8. Sherman, A. and Sutton, G.W. Magnetohydrodynamics,Northwestern University Press, Evanston (1962)

    Google Scholar 

  9. Gupta, A. S. Hall effects on thermal instability. Romanian Journal of Pure and Applied Mathematics, 12, 665–677 (1967)

    MATH  Google Scholar 

  10. Sharma, R. C., Sunil, and Chand, S. Thermosolutal instability of Rivlin-Ericksen rotating fluid in porous medium. Indian Journal of Pure and Applied Mathematics, 29(4), 433–440 (1998)

    MATH  Google Scholar 

  11. Reiner, M. A mathematical theory of dilatancy. American Journal of Mathematics, 67, 350–362 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rivlin, R. S. The hydrodynamics of non-Newtonian fluids, I. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, A193, 260–281 (1948)

    Article  MathSciNet  Google Scholar 

  13. Ericksen, J. L. Characterstic surfaces of equations of motion of non-Newtonian fluids. Zeitschrift fjr Angewandte Mathematik und Physik, 4, 260–267 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  14. Truesdell, C. and Noll, W. The Noninear Field Theories of Mechanics, Handbunch der Physik III/3, Springer, Berlin/Heidelberg/New York (1965)

    Google Scholar 

  15. Fredricksen, A. G. Principles and Applications of Rheology, Prentice-Hall Inc., New Jersey (1964)

    Google Scholar 

  16. Joseph, D. D. Stability of Fluid Motion II, Springer-Verlag, New York (1976)

    Google Scholar 

  17. Rivlin, R. S. and Ericksen, J. L. Stress-deformation relations for isotropic materials. Journal of Rational Mechanics and Analysis, 4, 323–425 (1955)

    MathSciNet  MATH  Google Scholar 

  18. Garg, A., Srivastava, R. K., and Singh, K. K. Drag on sphere oscillating dusty Rivlin-Ericksen elastico-viscous liquid. Proceedings of the Indian National Science Academy, 64A, 355–363 (1994)

    Google Scholar 

  19. Sharma, V. and Kumar, S. Magnetogravitational instability of a thermally conducting rotating viscoelastic fluid with Hall current. Indian Journal of Pure and Applied Mathematics, 31, 1559–1578 (2000)

    MathSciNet  MATH  Google Scholar 

  20. Kumar, S. The instability of streaming elastico-viscous fluids in porous medium in hydromagnetics. Journal of Applied Mathematics and Mechanics, 7, 33–45 (2011)

    MATH  Google Scholar 

  21. Sharma, R. C. and Bhardwaj, V. K. Thermosolutal convection in a rotating fluid in hydromagnetics in porous medium. Acta Physica Hungarica, 73, 59–66 (1993)

    Google Scholar 

  22. Sharma, R. C. and Kumari, V. Effect of magnetic field and rotation on thermosolutal convection in porous medium. Japan Journal of Industrial and Applied Mathematics, 9, 79–90 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sharma, R. C. and Kango, S. K. Thermal convection in Rivlin-Ericksen elastico-viscous fluid in porous medium in hydromagnetics. Czechoslovak Journal of Physics, 49, 197–203 (1999)

    Article  MATH  Google Scholar 

  24. Sharma, R. C., Sunil, and Chand, S. Hall effect on thermal instability of Rivlin-Ericksen fluid. Indian Journal of Pure and Applied Mathematics, 31, 49–59 (2000)

    MATH  Google Scholar 

  25. Kumar, S., Sharma, V., and Kishor, K. Stability of stratified Rivlin-Ericksen fluid in the presence of horizontal magnetic field and uniform horizontal rotation. International Journal of Mathematical Sciences and Applications, 4, 263–274 (2010)

    MathSciNet  Google Scholar 

  26. Rana, G. C. and Kumar, S. Thermal instability of Rivlin-Ericksen elastico-viscous rotating fluid permeating with suspended particles under variable gravity field in porous medium. Studia Geotechnica et Mechanica, 32, 39–54 (2010)

    Google Scholar 

  27. Kumar, S., Sharma, V., and Kishor, K. Effect of suspended particles on thermosolutal instability in Rivlin-Ericksen elastico-viscous fluid. Abstracts of the International Congress of Mathematicians, Hindustan Book Agency, New Delhi (2010)

    Google Scholar 

  28. Kumar, S., Gupta, D., Jaswal, R., and Rana, G. C. Thermal instability of elastico-viscous compressible fluid in the presence of Hall current. Studia Geotechnica et Mechanica, 33, 61–72 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Sharma, V. & Kishor, K. Numerical and analytical investigations of thermosolutal instability in rotating Rivlin-Ericksen fluid in porous medium with Hall current. Appl. Math. Mech.-Engl. Ed. 34, 501–522 (2013). https://doi.org/10.1007/s10483-013-1686-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1686-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation