Skip to main content
Log in

Time-dependent stagnation-point flow over rotating disk impinging oncoming flow

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The unsteady stagnation point flow of an incompressible viscous fluid over a rotating disk is investigated numerically in the present study. The disk impinges the oncoming flow with a time-dependent axial velocity. The three-dimensional axisymmetric boundary-layer flow is described by the Navier-Stokes equations. The governing equations are solved numerically, and two distinct similarity solution branches are obtained. Both solution branches exhibit different flow patterns. The upper branch solution exists for all values of the impinging parameter β and the rotating parameter Ω. However, the lower branch solution breaks down at some moderate values of β. The involvement of the rotation at disk allows the similarity solution to be transpired for all the decreasing values of β. The results of the velocity profile, the skin friction, and the stream lines are demonstrated through graphs and tables for both solution branches. The results show that the impinging velocity depreciates the forward flow and accelerates the flow in the tangential direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Von Karman, T. Überlaminare und turbulente Reibung. Journal of Applied Mathematics and Mechanics, 1, 233–252 (1921)

    MATH  Google Scholar 

  2. Cochran, W. G. The flow due to a rotating disc. Proceedings of Cambridge Philosophical Society, 30, 365–375 (1934)

    Article  MATH  Google Scholar 

  3. Stuart, J. T. On the effects of uniform suction on the steady flow due to a rotating disk. The Quarterly Journal of Mechanics and Applied Mathematics, 7, 446–457 (1954)

    Article  MathSciNet  Google Scholar 

  4. Sparrow, E. M. and Gregg, J. L. Mass transfer, flow, and heat transfer about a rotating disk. ASME Journal of Heat Transfer, 82, 294–302 (1960)

    Article  Google Scholar 

  5. Kuiken, H. K. The effect of normal blowing on the flow near a rotating disk of infinite extent. Journal of Fluid Mechanics, 47, 789–798 (1971)

    Article  MATH  Google Scholar 

  6. Ackroyd, J. A. D. On the steady flow produced by a rotating disc with either surface suction or injection. Journal of Engineering Mathematics, 12(3), 207–220 (1978)

    Article  MATH  Google Scholar 

  7. Kakutani, T. Hydromagnetic flow due to a rotating disk. Journal of Physics Society of Japan, 17, 1496–1506 (1962)

    Article  MATH  Google Scholar 

  8. Sparrow, E. M. and Chess, R. D. Magnetohydrodynamic flow and heat transfer about a rotating disk. ASME Journal of Applied Mechanics, 29, 181–187 (1962)

    Article  Google Scholar 

  9. Thacker, W. I., Kumar, S. K., and Watson, L. T. Magnetohydrodynamic flow and heat transfer about a rotating disk with suction and injection at the disk surface. Computers & Fluids, 16, 183–193 (1988)

    Article  MATH  Google Scholar 

  10. Pande, G. S. On the effects of uniform high suction on the steady hydromagnetic flow due to a rotating disk. Applied Scientific Research, 11, 205–212 (1971)

    Article  Google Scholar 

  11. Watson, L. T. and Wang, C. Y. Deceleration of a rotating disk in a viscous fluid. Physics of Fluids, 22, 2267–2269 (1979)

    Article  MATH  Google Scholar 

  12. Kumar, S. K., Thacker, W. I., and Watson, L. T. Magnetohydrodynamic flow past a porous rotating disk in a circular magnetic field. International Journal for Numerical Methods in Fluids, 8, 659–669 (1988)

    Article  MATH  Google Scholar 

  13. Watanabe, T. and Oyama, T. Magnetohydrodynamic boundary layer flow over a rotating disk. Zeitschrift für Angewandte Mathematik und Mechanik, 71(12), 522–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Munawar, S., Mehmood, A., and Ali, A. Three-dimensional squeezing flow in a rotating channel of lower stretching porous wall. Computers & Mathematics with Applications, 64, 1575–1586 (2012)

    Article  MathSciNet  Google Scholar 

  15. Frusteri, F. and Osalusi, E. On MHD and slip flow over a rotating porous disk with variable properties. International Communication in Heat and Mass Transfer, 34, 492–501 (2007)

    Article  Google Scholar 

  16. Miklavcic, M. and Wang, C. Y. The flow due to a rotating disk. Journal of Applied Mathematics and Physics, 54, 1–12 (2004)

    Google Scholar 

  17. Hannah, D. M. Forced Flow Against a Rotating Disc, British Aeronautical Research Council Reports and Memoranda, No. 2772, University of Michigan (1947)

  18. Tifford, A. N. and Chu, S. T. On the flow around a rotating disc in a uniform stream. Journal of the Aeronautical Science, 19, 284–285 (1952)

    Google Scholar 

  19. Wang, C. Y. Off-centered stagnation flow towards a rotating disc. International Journal of Engineering Science, 46, 391–396 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nourbakhsh, S. H., Zanoosi, A. A. P., and Shateri, A. R. Analytical solution for off-centered stagnation flow towards a rotating disc problem by homotopy analysis method with two auxiliary parameters. Communication in Nonlinear Science and Numerical Simulation, 16, 2772–2787 (2011)

    Article  MATH  Google Scholar 

  21. Mehmood, A. and Ali, A. An explicit analytic solution of steady three-dimensional stagnation point flow of second grade fluid toward a heated plate. ASME Journal of Applied Mechanics, 75, 061003 (2008)

    Article  Google Scholar 

  22. Yang, K. T. Unsteady laminar boundary layers in an incompressible stagnation flow. ASME Journal of Applied Mechanics, 25, 421–427 (1958)

    MATH  Google Scholar 

  23. Williams, J. C. Non-steady stagnation-point flow. AIAA Journal, 6(12), 2417–2419 (1968)

    Article  MATH  Google Scholar 

  24. Cheng, E. H. W., Ozisik, M. N., and Williams, J. C. Non-steady three-dimensional stagnation point flow. ASME Journal of Applied Mechanics, 38(1), 282–287 (1971)

    Article  Google Scholar 

  25. Kumari, M. and Nath, G. Unsteady MHD film flow over a rotating infinite disk. International Journal of Engineering Science, 42, 1099–1117 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Munawar, S., Mehmood, A., and Ali, A. Effects of slip on flow between two stretchable disks using optimal homotopy analysis method. Canadian Journal of Applied Sciences, 1(2), 50–68 (2011)

    Google Scholar 

  27. Nazar, R., Amin, N., Filip, D., and Pop, I. Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. International Journal of Engineering Science, 42, 1241–1253 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fang, T. and Lee, C. F. Three-dimensional wall-bounded laminar boundary layer with span-wise cross free stream and moving boundary. Acta Mechanica, 204, 235–248 (2009)

    Article  MATH  Google Scholar 

  29. Fang, T. Flow over a stretchable disk. Physics of Fluids, 19, 128105 (2007)

    Article  Google Scholar 

  30. Cheng, J. and Dai, S. Q. A uniformly valid series solution to the unsteady stagnation-point flow towards an impulsively stretching surface. Science in China Series G: Physics, Mechanics & Astronomy, 53(3), 521–526 (2010)

    Article  MathSciNet  Google Scholar 

  31. Zhong, Y. and Fang, T. Unsteady stagnation-point flow over a plate moving along the direction of flow impingement. International Journal of Heat and Mass Transfer, 54, 3103–3108 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Munawar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munawar, S., Mehmood, A. & Ali, A. Time-dependent stagnation-point flow over rotating disk impinging oncoming flow. Appl. Math. Mech.-Engl. Ed. 34, 85–96 (2013). https://doi.org/10.1007/s10483-013-1655-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1655-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation