Skip to main content
Log in

State-space approach to two-temperature generalized thermoelasticity without energy dissipation of medium subjected to moving heat source

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this work, a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed. The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions. The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity. The inverse Laplace transforms are computed numerically, and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

λ, μ :

Lamé’s constants

ρ :

density

C E :

specific heat at constant strain

t :

time

T :

dynamical temperature

T 0 :

reference temperature

θ :

dynamical temperature increment (T−T 0)

φ :

conductive temperature

Q :

heat source

α T :

coefficient of linear thermal expansion

Γ :

stress-temperature coefficient (3λ+2μ)αT

σ ij :

components of stress tensor

e ij :

components of strain tensor

u i :

components of displacement vector

K*:

characteristic of theorem

c 0 :

longitudinal wave speed \(\sqrt {\frac{{\lambda + 2\mu }} {\rho }}\)

η :

thermal viscosity \(\frac{{\rho C_E }} {{K^* }}\)

ɛ T :

dimensionless thermoelastic coupling constant \(\frac{{\gamma c_0^2 }} {{K^* }}\)

C T :

dimensionless conductive-dynamical heat coupling constant ηc 20

a :

two-temperature parameter

β :

dimensionless two-temperature parameter ac 20 η 2

b :

dimensionless mechanical coupling constant \(\frac{{\gamma T_0 }} {{\lambda + 2\mu }}\)

v :

heat source velocity

References

  1. Green, A. E. and Naghdi, P. M. Thermoelasticity without energy dissipation. Journal of Elasticity, 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Green, A. E. and Naghdi, P. M. A re-examination of the basic postulate of thermomechanics. Proceeding of the Royal Society A, 432, 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hetnarski, R. B. and Eslami, M. R. Thermal Stresses Advanced Theory and Applications, Springer, New York (2009)

    MATH  Google Scholar 

  4. Chandrasekharaiah, D. S. and Srinath, K. S. Thermoelastic waves without energy dissipation in an unbounded body with a spherical cavity. International Journal of Mathematics and Mathematical Science, 23(8), 555–562 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kumar, R. and Deswal, S. Surface wave propagation in a micropolar thermoelastic medium without energy dissipation. Journal of Sound and Vibration, 256(1), 173–178 (2002)

    Article  Google Scholar 

  6. Quintanilla, R. Thermoelasticity without energy dissipation of materials with microstructure. Journal of Applied Mathematical Modeling, 26, 1125–1137 (2002)

    Article  MATH  Google Scholar 

  7. Roychoudhuri, S. K. and Dutta, P. S. Thermo-elastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat sources. International Journal of Solids and Structures, 42, 4192–4203 (2005)

    Article  MATH  Google Scholar 

  8. Roychoudhuri, S. K. and Bandyopadhyay, N. Radially symmetric thermo-elastic wave propagation without energy dissipation in an infinitely extended thin plate with a circular hole. Journal of Applied Mathematics and Computation, 179(1), 267–281 (2006)

    Article  MathSciNet  Google Scholar 

  9. Youssef, H. M. Theory of two-temperature generalized thermoelasticity. Journal of Thermal Stresses, 34(2), 138–146 (2011)

    Article  MathSciNet  Google Scholar 

  10. Youssef, H. M. State-space approach of two-temperature generalized thermoelastic medium subjected to moving heat source and ramp-type heating. Journal of Mechanics of Materials and Structures, 4(9), 1637–1649 (2009)

    Article  MathSciNet  Google Scholar 

  11. Youssef, H. M. Two-temperature generalized thermoelastic infinite medium with cylindrical cavity subjected to moving heat source. Archive of Applied Mechanics, 80(11), 1213–1224 (2010)

    Article  MathSciNet  Google Scholar 

  12. Youssef, H. M. Generalized thermoelastic infinite medium with spherical cavity subjected to moving hear source. Journal of Computational Mathematics and Modeling, 21(2), 212–225 (2010)

    Article  MATH  Google Scholar 

  13. Charles, G. C. Matrices and Linear Transformations, 2nd ed., Addison-Wesley Publishing Company, New Jersey (1972)

    MATH  Google Scholar 

  14. Tzou, D. Macro-to-Micro Heat Transfer, Taylor & Francis, Washington, D. C. (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Youssef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youssef, H.M. State-space approach to two-temperature generalized thermoelasticity without energy dissipation of medium subjected to moving heat source. Appl. Math. Mech.-Engl. Ed. 34, 63–74 (2013). https://doi.org/10.1007/s10483-013-1653-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1653-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation