Skip to main content
Log in

Iterative and adjusting method for computing stream function and velocity potential in limited domains and convergence analysis

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The stream function and the velocity potential can be easily computed by solving the Poisson equations in a unique way for the global domain. Because of the various assumptions for handling the boundary conditions, the solution is not unique when a limited domain is concerned. Therefore, it is very important to reduce or eliminate the effects caused by the uncertain boundary condition. In this paper, an iterative and adjusting method based on the Endlich iteration method is presented to compute the stream function and the velocity potential in limited domains. This method does not need an explicitly specifying boundary condition when used to obtain the effective solution, and it is proved to be successful in decomposing and reconstructing the horizontal wind field with very small errors. The convergence of the method depends on the relative value for the distances of grids in two different directions and the value of the adjusting factor. It is shown that applying the method in Arakawa grids and irregular domains can obtain the accurate vorticity and divergence and accurately decompose and reconstruct the original wind field. Hence, the iterative and adjusting method is accurate and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawkins, H. F. and Rosenthal, S. L. On the computation of stream function from the wind field. Mon. Wea. Rev., 93(4), 245–252 (1965)

    Article  Google Scholar 

  2. Lü, M. Z., Hou, Z. M., and Zhou, Y. Dynamic Meteorology (in Chinese), Meteorological Press, Beijing, 113–114 (2004)

    Google Scholar 

  3. Frederiksen, J. S. and Frederiksen, C. S. Monsoon disturbances, intraseasonal oscillations, teleconnection patterns, blocking, and storm tracks of the global atmosphere during January 1979: linear theory. J. Atmos. Sci., 50(10), 1349–1372 (1993)

    Article  Google Scholar 

  4. Knutson, T. R. and Weickmann, K. M. 30–60 day atmospheric oscillations: composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115(7), 1407–1436 (1987)

    Article  Google Scholar 

  5. Lorenc, A. C., Ballard, S. P., Bell, R. S., Ingleby, N. B., Andrews, P. L. F., Barker, D. M., Bray, J. R., Clayton, A. M., Dalby, T., Li, D., Payne, T. J., and Saunders. F. W. The Met. Office global 3-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 2991–3012 (2000)

    Article  Google Scholar 

  6. Barker, D. M., Huang, W., Guo, Y. R., Bourgeois, A. J., and Xiao, Q. N. A three-dimensional (3DVAR) data assimilation system for use with MM5: implementation and initial results. Mon. Wea. Rev., 132(4), 897–914 (2004)

    Article  Google Scholar 

  7. Bourke, W. An efficient one-level primitive equation spectral model. Mon. Wea. Rev., 100(9), 683–689 (1972)

    Article  Google Scholar 

  8. Bijlsma, S. J., Hafkensheid, L. M., and Lynch, P. Computation of the stream function and the velocity potential and reconstruction of the wind field. Mon. Wea. Rev., 114(8), 1547–1551 (1986)

    Article  Google Scholar 

  9. Tangri, A. C. Computation of streamlines associated with a low latitude cyclone. Indian J. Meteor. Geophys., 17, 401–406 (1966)

    Google Scholar 

  10. Phillips, N. A. Geostrophic errors in predicting the Appalachian storm of November 1950. Geophysica, 6, 389–405 (1958)

    Google Scholar 

  11. Brown, J. A. and Neilon, J. R. Case studies of numerical wind analysis. Mon. Wea. Rev., 89(3), 83–90 (1961)

    Article  Google Scholar 

  12. Sangster, W. E. A method of representing the horizontal pressure force without reduction of station pressures to sea level. J. Meteor., 17(2), 166–176 (1960)

    Article  Google Scholar 

  13. Sangster, W. E. An improved technique for computing the horizontal pressure-gradient force at the Earth’s surface. Mon. Wea. Rev., 115(7), 1358–1368 (1987)

    Article  Google Scholar 

  14. Shukla, J. and Saha, K. R. Computation of non-divergent stream function and irrotational velocity potential from the observed winds. Mon. Wea. Rev., 102(6), 419–425 (1974)

    Article  Google Scholar 

  15. Lynch, P. Deducing the wind from vorticity and divergence. Mon. Wea. Rev., 116(1), 86–93 (1988)

    Article  MathSciNet  Google Scholar 

  16. Lynch, P. Partitioning the wind in a limited domain. Mon. Wea. Rev., 117(7), 1492–1500 (1989)

    Article  Google Scholar 

  17. Chen, Q. S. and Kuo, Y. H. A harmonic-sine series expansion and its application to partitioning and reconstruction problems in a limited area. Mon. Wea. Rev., 120(1), 91–112 (1992)

    Article  Google Scholar 

  18. Chen, Q. S. and Kuo, Y. H. A consistency condition for wind-field reconstruction in a limited area and harmonic-cosine series expansion. Mon. Wea. Rev., 120(11), 2653–2670 (1992)

    Article  Google Scholar 

  19. Zhu, Z. S. and Zhu, G. F. An effective method to solve the stream function and the velocity potential from a wind field in a limited area (in Chinese). Quart. J. Appl. Meteor. Sci., 19(1), 10–18 (2008)

    Google Scholar 

  20. Zhu, Z. S., Zhu, G. F., and Zhang, L. An accurate solution method of the stream function and the velocity potential from the wind field in a limited area (in Chinese). Chinese J. Atmos. Sci., 33(4), 811–824 (2009)

    Google Scholar 

  21. Zhou, Y. S., Cao, J., and Gao, S. T. The method of decomposing wind field in a limited area and its application to typhoon SAOMEI (in Chinese). Acta Phys. Sin., 57(10), 6654–6665 (2008)

    Google Scholar 

  22. Zhou, Y. S. and Cao, J. Partitioning and reconstruction problem of the wind in a limited region (in Chinese). Acta Phys. Sin., 59(4), 2898–2906 (2010)

    MathSciNet  Google Scholar 

  23. Endlich, R. M. An iterative method for altering the kinematic properties of wind fields. J. Appl. Meteor., 6(5), 837–844 (1967)

    Article  Google Scholar 

  24. Davies-Jones, R. On the formulation of surface geostrophic stream function. Mon. Wea. Rev., 116(9), 1824–1826 (1988)

    Article  Google Scholar 

  25. Li, Z. J. and Chao, Y. Computation of the stream function and the velocity potential for limited and irregular domains. Mon. Wea. Rev., 134(11), 3384–3394 (2006)

    Article  Google Scholar 

  26. Liu, J. W., Guo, H., Li, Y. D., Liu, H. Z., and Wu, B. J. The Basis of Weather Analysis and Prediction Physical Quantity Calculation (in Chinese), China Meteorologica Press, Beijing, 249–251 (2005)

    Google Scholar 

  27. Zhang, W. S. Finite Difference Methods for Partial Differential Equations in Science Computation (in Chinese), Higher Education Press, Beijing, 172 (2004)

    Google Scholar 

  28. Arakawa, A. Computational design for long-term numerical integrations of the equations of fluid motion: two-dimensional incompressible flow, part l. J. Comput. Phys., 1(1), 119–143 (1966)

    Article  MATH  Google Scholar 

  29. Watterson, I. G. Decomposition of global ocean currents using a simple iterative method. J. Atmos. Ocean. Technol., 18(4), 691–703 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-feng Zhang  (张立凤).

Additional information

Project supported by the National Natural Science Foundation of China (No. 40975031)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Ab., Zhang, Lf., Zang, Zl. et al. Iterative and adjusting method for computing stream function and velocity potential in limited domains and convergence analysis. Appl. Math. Mech.-Engl. Ed. 33, 687–700 (2012). https://doi.org/10.1007/s10483-012-1580-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1580-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation