Skip to main content
Log in

Lie symmetry group transformation for MHD natural convection flow of nanofluid over linearly porous stretching sheet in presence of thermal stratification

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the presence of thermal stratification are examined. The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations, i.e., a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gill-based shooting method. It is concluded that the flow field, temperature, and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, S. Enhancing thermal conductivity of fluids with nanoparticle. Developments and Applications of Non-Newtonian Flows (eds. Siginer, D. A. and Wang, H. P.), American Society of Meehanical Engineers, San Francisco/California, 99–105 (1995)

    Google Scholar 

  2. Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei, 7(2), 227–233 (1993)

    Article  Google Scholar 

  3. Buongiorno, J. and Hu, W. Nanofluid coolants for advanced nuclear power plants. Proceedings of ICAPP’05, Curran Associctes, Seoul, 15–19 (2005)

  4. Buongiorno, J. Convective transport in nanofluids. ASME Journal of Heat Transfer, 128(2), 240–250 (2006)

    Article  Google Scholar 

  5. Kuznetsov, A. V. and Nield, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(3), 243–247 (2010)

    Article  Google Scholar 

  6. Nield, D. A. and Kuznetsov, A. V. The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer, 52(9), 5792–5795 (2009)

    Article  MATH  Google Scholar 

  7. Cheng, P. and Minkowycz, W. J. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. Journal of Geophysics Research, 82(6), 2040–2044 (1977)

    Article  Google Scholar 

  8. Birkoff, G. Mathematics for engineers. Electrical Engineering, 67(5), 1185–1188 (1948)

    Google Scholar 

  9. Birkoff, G. Hydrodynamics, Princeton University Press, New Jersey (1960)

    Google Scholar 

  10. Moran, M. J. and Gaggioli, R. A. Similarity analysis via group theory. AIAA Journal, 6(8), 2014–2016 (1968)

    Google Scholar 

  11. Moran, M. J. and Gaggioli, R. A. Reduction of the number of variables in systems of partial differential equations with auxiliary conditions. SIAM Journal of Applied Mathematics, 16(2), 202–215 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ibrahim, F. S. and Hamad, M. A. A. Group method analysis of mixed convection boundary-layer flow of a micropolar fluid near a stagnation point on a horizontal cylinder. Acta Mechanica, 181(1), 65–81 (2006)

    Article  MATH  Google Scholar 

  13. Yurusoy, M. and Pakdemirli, M. Symmetry reductions of unsteady three-dimensional boundarylayers of some non-Newtonian fluids. International Journal of Engineering Sciences, 35(2), 731–740 (1997)

    Article  MathSciNet  Google Scholar 

  14. Yurusoy, M. and Pakdemirli, M. Exact solutions of boundary layer equations of a special non-Newtonian fluid over a stretching sheet. Mechanics Research Communications, 26(1), 171–175 (1999)

    Article  MathSciNet  Google Scholar 

  15. Yurusoy, M., Pakdemirli, M., and Noyan, O. F. Lie group analysis of creeping flow of a second grade fluid. International Journal of Non-Linear Mechanics, 36(8), 955–960 (2001)

    Article  MathSciNet  Google Scholar 

  16. Hassanien, I. A. and Hamad, M. A. A. Group theoretic method for unsteady free convection flow of a micropolar fluid along a vertical plate in a thermally stratified medium. Applied Mathematical Modelling, 32(6), 1099–1114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Makinde, O. D. and Aziz, A. Boundary-layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Science, 50(5), 1326–1332 (2011)

    Article  Google Scholar 

  18. Oztop, H. F. and Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29(6), 1326–1336 (2008)

    Article  Google Scholar 

  19. Akira, N. and Hitoshi, K. Similarity solutions for buoyancy induced flows over a non-isothermal curved surface in a thermally stratified porous medium. Applied Scientific Research, 46(2), 309–314 (1989)

    MATH  Google Scholar 

  20. Aminossadati, S. M. and Ghasemi, B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure. European Journal of Mechanics B/Fluids, 28(4), 630–640 (2009)

    Article  MATH  Google Scholar 

  21. Crane, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 21(4), 645–647 (1970)

    Article  Google Scholar 

  22. Vajravelu, K. Flow and heat transfer in a saturated porous medium over a stretching surface. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 74(12), 605–614 (1994)

    Article  MATH  Google Scholar 

  23. Abel, M. S. and Veena, P. H. Visco-elastic fluid flow and heat transfer in a porous media over a stretching sheet. International Journal of Non-Linear Mechanics, 33(3), 531–540 (1998)

    Article  Google Scholar 

  24. Abel, M. S., Khan, S. K., and Prasad, K. V. Momentum and heat transfer in visco-elastic fluid in a porous medium over a non-isothermal stretching sheet. International Journal of Numerical Methods and Heat Fluid Flow, 10(3), 786–801 (2000)

    MATH  Google Scholar 

  25. Gill, S. A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proceedings of the Cambridge Philosophical Society, Cambridge University Press, Cambridge, 96–108 (1951)

    Google Scholar 

  26. Grubka, L. G. and Bobba, K. M. Heat characteristics of a continuous stretching surface with variable temperature. ASME Journal of Heat Transfer, 107(2), 248–250 (1985)

    Article  Google Scholar 

  27. Ali, M. E. Heat characteristics of a continuous stretching surface. Wärme-und Stoffübertragung, 29(2), 227–234 (1994)

    Article  Google Scholar 

  28. Ishak, A., Nazar, R., and Pop, I. Boundary-layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica, 44(2), 369–375 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vajravelu, K., Prasad, K. V., Lee, J. H., Lee, C. G., Pop, I., and van Gorder, R. A. Convective heat transfer in the flow of viscous Ag-water and Cu-water nanofluids over a stretching surface. International Journal of Thermal Sciences, 50(5), 843–851 (2011)

    Article  Google Scholar 

  30. Hamad, M. A. A., Pop, I., and Md-Ismail, A. I. Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Nonlinear Analysis: Real World Applications, 12(3), 1338–1346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kandasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosmila, A.B., Kandasamy, R. & Muhaimin, I. Lie symmetry group transformation for MHD natural convection flow of nanofluid over linearly porous stretching sheet in presence of thermal stratification. Appl. Math. Mech.-Engl. Ed. 33, 593–604 (2012). https://doi.org/10.1007/s10483-012-1573-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1573-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation