Skip to main content
Log in

Exact solutions in generalized Oldroyd-B fluid

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This investigation deals with the influence of slip condition on the magnetohydrodynamic (MHD) and rotating flow of a generalized Oldroyd-B (G. Oldroyd-B) fluid occupying a porous space. Fractional calculus approach is used in the mathematical modeling. Three illustrative examples induced by plate oscillations and periodic pressure gradient are considered, and the exact solutions in each case are derived. Comparison is provided between the results of slip and no-slip conditions. The influence of slip is highlighted on the velocity profile by displaying graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajagopal, K. R. On boundary conditions for fluids of the differential type. Navier-Stokes Equations and Related Non-linear Problems (ed. Sequria, A.), Plenum Press, New York, 273–278 (1995)

    Google Scholar 

  2. Rajagopal, K. R. Boundedness and uniqueness of fluids of the differential type. Acta Cienca Indica, 18, 1–11 (1982)

    Google Scholar 

  3. Rajagopal, K. R., Szeri, A. Z., and Troy, W. An existence theorem for the flow of a non-Newtonian fluid past an infinite porous plate. Int. J. Non-Linear Mech., 21, 279–289 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tan, W. C. and Masuoka, T. Stokes first problem for an Oldroyd-B fluid in a porous half space. Phys. Fluids, 17, 023101–023107 (2005)

    Article  MathSciNet  Google Scholar 

  5. Xue, C. F., Nie, J. X., and Tan, W. C. An exact solution of start up flow for the fractional generalized Burgers’ fluid in a porous half space. Nonlinear Analysis: Theory, Methods and Applications, 69, 2086–2094 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Vieru, D., Fetecau, C., and Fetecau, C. Flow of viscoelastic fluid with the fractional Maxwell model between two side walls perpendicular to a plate. Appl. Math. Comp., 200, 454–464 (2008)

    Article  MathSciNet  Google Scholar 

  7. Fetecau, C. and Fetecau, C. Unsteady motions of a Maxwell fluid due to longitudinal and torsional oscillations of an infinite circular cylinder. Proc. Romanian Acad. Series A, 8, 77–84 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Fetecau, C., Hayat, T., and Fetecau, C. Starting solutions for oscillating motions of Oldroyd-B fluid in cylindrical domains. J. Non-Newtonian Fluid Mech., 153, 191–201 (2008)

    Article  Google Scholar 

  9. Ravindran, P., Krishnan, J. M., and Rajagopal, K. R. A note on the flow of a Burgers’ fluid in an orthogonal rheometer. Int. J. Eng. Sci., 42, 1973–1985 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hayat, T., Ahmad, G., and Sajid, M. Thin film flow of MHD third grade fluid in a porous space. J. Porous Media, 12, 65–75 (2009)

    Article  Google Scholar 

  11. Hayat, T., Momoniat, E., and Mahomed, F. M. Axial Couette flow of an electrically conducting fluid in an annulus. Int. J. Modern Phys. B, 22, 2489–2500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tan, W. C. and Masuoka, T. Stability analysis of a Maxwell fluid in a porous medium heated from below. Phys. Lett. A, 360, 454–460 (2007)

    Article  Google Scholar 

  13. Mekheimer, Kh. S. and Elmaboud, Y. A. Peristaltic flow of a couple stress fluid in an annulus: application of an endoscope. Physica A, 387, 2403–2415 (2008)

    Article  Google Scholar 

  14. Sajid, M. and Hayat, T. Thin film flow of an Oldroyd-8-constant fluid: an exact solution. Phys. Lett. A, 372, 1827–1830 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hayat, T., Ahmad, N., and Ali, N. Effects of an endoscope and magnetic field on the peristalsis involving Jeffery fluids. Nonlinear Sci. Num. Simul., 13, 1581–1591 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hayat, T., Fetecau, C., and Sajid, M. Analytic solution for MHD transient rotating flow of a second grade fluid in a porous space. Nonlinear Anal. Real World Appl., 9, 1619–1627 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hayat, T., Javed, T., and Sajid, M. Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface. Phys. Lett. A, 372, 3264–3273 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rajagopal, K. R. Flow of viscoelastic fluids between rotating disks. Theor. Comput. Fluid Dyn., 3, 185–206 (1992)

    Article  MATH  Google Scholar 

  19. Hayat, T. and Abelman, S. A numerical study of the influence of slip boundary condition on rotating flow. Int. J. Comput. Fluid Dyn., 21, 21–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tan, W. C., Pan, W. X., and Xu, M. Y. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. Int. J. Non-Linear Mech., 38, 645–650 (2003)

    Article  MATH  Google Scholar 

  21. Tan, W. C., Xian, F., and Wei, L. An exact solution of unsteady Couette flow of generalized second grade fluid. Chin. Sci. Bull., 47, 1783–1785 (2002)

    Article  MathSciNet  Google Scholar 

  22. Tan, W. C. and Xu, M. Y. The impulsive motion of flat plate in a general second grade fluid. Mech. Res. Commun., 29, 3–9 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tan, W. C. and Xu, M. Y. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech. Sin., 18, 342–349 (2002)

    Article  MathSciNet  Google Scholar 

  24. Shen, F., Tan, W. C., Zhao, Y. H., and Masuoka, T. Decay of vortex velocity and diffusion of temperature in a generalized second grade fluid. Appl. Math. Mech. -Engl. Ed., 25, 1151–1159 (2004) DOI 10.1007/BF02439867

    Article  MATH  Google Scholar 

  25. Khan, M., Hayat, T., and Asghar, S. Exact solution of MHD flow of a generalized Oldroyd-B fluid with modified Darcy’s law. Int. J. Eng. Sci., 44, 333–339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khan, M., Maqbool, K., and Hayat, T. Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space. Acta Mech., 184, 1–13 (2006)

    Article  MATH  Google Scholar 

  27. Khan, M., Hayat, T., Nadeem, S., and Siddiqui, A. M. Unsteady motions of a generalized second grade fluid. Math. Comput. Model., 41, 629–637 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hayat, T., Khan, M., and Asghar, S. On the MHD flow of fractional generalized Burgers’ fluid with modified Darcy’s law. Acta Mech. Sin., 23, 257–261 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, F., Tan, W. C., Zhao, Y. H., and Masuoka, T. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl., 7, 1072–1080 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xue, C. and Nie, J. Exact solutions of Stokes’ first problem for heated generalized Burgers’ fluid in a porous half-space. Nonlinear Anal. Real World Appl., 9, 1628–1637 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayat, T., Zaib, S., Asghar, S. et al. Exact solutions in generalized Oldroyd-B fluid. Appl. Math. Mech.-Engl. Ed. 33, 411–426 (2012). https://doi.org/10.1007/s10483-012-1560-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1560-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation