Skip to main content
Log in

Dynamic analysis of two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flow

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear aeroelastic response of a two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flows is investigated. The second-order piston theory is used to analyze a double-wedge airfoil. Then, the fold bifurcation and the amplitude jump phenomenon are detected by the averaging method and the multi-variable Floquet theory. The analytical results are further verified by numerical simulations. Finally, the influence of the freeplay parameters on the aeroelastic response is analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, L. K., Qian, C., Marzocca, P., Zafer, G., and Mostafa, A. Active aerothermoelastic control of hypersonic double-wedge lifting surface. Chinese Journal of Aeronautics, 21(1), 8–18 (2008)

    Article  Google Scholar 

  2. Librescu, L., Chiocchia, G., and Marzocca, P. Implications of cubic physical/aerodynamic nonlinearities on the character of the flutter instability boundary. International Journal of Non-Linear Mechanics, 38(2), 173–199 (2003)

    Article  MATH  Google Scholar 

  3. Hyun, D. H. and Lee, I. Transonic and low-supersonic aeroelastic analysis of a two-degree-of-freedom airfoil with a freeplay non-linearity. Journal of Sound and Vibration, 234(5), 859–880 (2000)

    Article  Google Scholar 

  4. Liu, L. and Song, Y. S. Nonlinear aeroelastic analysis using the point transformation method, part 1, freeplay model. Journal of Sound and Vibration, 253(2), 447–469 (2002)

    Article  MathSciNet  Google Scholar 

  5. Roberts, I., Jones, D. P., Lieven, N. A. J., Bernado, M. D., and Champneys, A. R. Analysis of piecewise linear aeroelastic systems using numerical continuation. Journal of Aeronautical Engineering, 216(1), 1–11 (2002)

    Google Scholar 

  6. Chen, Y. M. and Liu, J. K. Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems. Applied Mathematics and Mechanics (English Edition), 29(2), 181–187 (2008) DOI 10.1007/s10483-008-0207-x

    Article  MATH  Google Scholar 

  7. Liu, L., Wong, Y. S., and Lee, B. H. K. Application of the center manifold theory in nonlinear aeroelasticity. Journal of Sound and Vibration, 234(4), 641–659 (2000)

    Article  MathSciNet  Google Scholar 

  8. Chung, K. W., Chan, C. L., and Lee, B. H. K. Bifurcation analysis of a two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity by a perturbation-incremental method. Journal of Sound and Vibration, 299(3), 520–539 (2007)

    Article  Google Scholar 

  9. Chen, Y. M. and Liu, J. K. Homotopy analysis method for limit cycle oscillations of an airfoil with cubic nonlinearities. Journal of Vibration and Control, 16(2), 163–179 (2010)

    Article  MathSciNet  Google Scholar 

  10. Raghothama, A. and Narayanan, S. Nonlinear dynamics of a two-dimensional airfoil by incremental harmonic balance method. Journal of Sound and Vibration, 226(3), 493–517 (1999)

    Article  Google Scholar 

  11. Gordon, J. T., Meyer, E. E., and Minogue, R. L. Nonlinear stability analysis of control surface flutter with freeplay effects. Journal of Aircraft, 45(6), 1904–1916 (2008)

    Article  Google Scholar 

  12. Shen, S. F. An approximate analysis of nonlinear flutter problems. Journal of the Aerospace Sciences, 25(1), 25–32 (1959)

    Google Scholar 

  13. Yang, Y. R. KBM method of analyzing limit cycle flutter of a wing with an external store and comparison with a wind-tunnel test. Journal of Sound and Vibration, 187(2), 271–280 (1995)

    Article  Google Scholar 

  14. Kim, S. H. and Lee, I. Aeroelastic analysis of a flexible airfoil with a freeplay nonlinearity. Journal of Sound and Vibration, 193(4), 823–846 (1996)

    Article  Google Scholar 

  15. Dimitriadis, G. Bifurcation analysis of aircraft with structural nonlinearity and freeplay using numerical continuation. Journal of Aircraft, 45(3), 893–905 (2008)

    Article  Google Scholar 

  16. Zhao, D. M. and Zhang, Q. C. Bifurcation and chaos analysis for aeroelastic airfoil with freeplay structural nonlinearity in pitch. Chinese Physics B, 19(3), 1–10 (2010)

    Google Scholar 

  17. Conner, M. D., Tang, D. M., Dowell, E. H., and Virgin, L. N. Nonlinear behavior of a typical airfoil section with control surface freeplay: a numerical and experimental study. Journal of Fluids and Structures, 11(1), 89–109 (1997)

    Article  Google Scholar 

  18. Tang, D. and Dowell, E. H. Flutter and limit-cycle oscillations for a wing-store model with freeplay. Journal of Aircraft, 43(2), 487–503 (2006)

    Article  Google Scholar 

  19. Tang, D., Dowell, E. H., and Virgin, L. N. Limit cycle behavior of an airfoil with a control surface. Journal of Fluids and Structures, 12(7), 839–858 (1998)

    Article  Google Scholar 

  20. Tang, D., Conner, M. D., and Dowell, E. H. Reduced-order aerodynamic model and its application to a nonlinear aeroelastic system. Journal of Aircraft, 35(2), 332–338 (1998)

    Article  Google Scholar 

  21. Liu, L. and Dowell, E. H. Harmonic balance approach for an airfoil with a freeplay control surface. AIAA Journal, 43(4), 802–815 (2005)

    Article  Google Scholar 

  22. Lin, W. B. and Cheng, W. H. Nonlinear flutter of loaded lifting surfaces (I) and (II). Journal of the Chinese Society of Mechanical Engineers, 14(5), 446–466 (1993)

    Google Scholar 

  23. Ashley, H. and Zartarian, G. Piston theory—a new aerodynamic tool for the aeroelastician. Journal of the Aeronautical Sciences, 23(12), 1109–1118 (1956)

    MathSciNet  Google Scholar 

  24. Abbas, L. K., Chen, Q., O’Donnell, K., Valentine, D., and Marzocca, P. Numerical studies of a nonlinear aeroelastic system with plunging and pitching freeplays in supersonic/hypersonic regimes. Aerospace Science and Technology, 11(5), 405–418 (2007)

    Article  Google Scholar 

  25. Friedmann, P. P., McNamara, J. J., Thuruthimattam, B. J., and Nydick, I. Aeroelastic analysis of hypersonic vehicles. Journal of Fluids and Structures, 19(5), 681–712 (2004)

    Article  Google Scholar 

  26. Lee, B. H. K., Price, S. J., and Wong, Y. S. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Progress in Aerospace Sciences, 35(3), 205–334 (1999)

    Article  Google Scholar 

  27. Nayfeh, A. H. and Mook, D. T. Nonlinear Oscillations, 1st ed., Wiley, New York (1979)

    MATH  Google Scholar 

  28. Nayfeh, A. H. Perturbation Methods, 1st ed., Wiley, New York (1973)

    MATH  Google Scholar 

  29. Friedmann, P., Hammond, C. E., and Woo, T. H. Efficient numerical treatment of periodic systems with application to stability problems. International Journal of Numerical Methods in Engineering, 11(7), 1117–1136 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ge, Z. M. and Chen, H. H. Bifurcations and chaotic motions in a rate gyro with a sinusoidal velocity about the spin axis. Journal of Sound and Vibration, 200(2), 121–137 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-shu Chen  (陈予恕).

Additional information

Contributed by Yu-shu CHEN

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Hl., Chen, Ys. Dynamic analysis of two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flow. Appl. Math. Mech.-Engl. Ed. 33, 1–14 (2012). https://doi.org/10.1007/s10483-012-1529-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1529-x

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation