Advertisement

Applied Mathematics and Mechanics

, Volume 32, Issue 7, pp 837–846 | Cite as

Hydromagnetic flow through uniform channel bounded by porous media

  • K. RamakrishnanEmail author
  • K. Shailendhra
Article

Abstract

The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible, and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability, Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.

Key words

uniform channel permeable wall magnetic field slip velocity shear stress 

Chinese Library Classification

O357.3 

2010 Mathematics Subject Classification

76W05 76S05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Makinde, O. D. Magneto-hydrodynamic stability of plane-Poiseuille flow using multideck asymptotic technique. Mathematical and Computer Modelling, 37(3), 251–259 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Rao, A. R. and Deshikachar, K. S. MHD oscillatory flow of blood through channels of variable cross section. Int. J. Engng. Sci., 24(10), 1615–1628 (1986)zbMATHCrossRefGoogle Scholar
  3. [3]
    Berman, S. Laminar flow in channels with porous walls. J. Appl. Phys., 24(9), 1232–1235 (1953)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Sellars, J. R. Laminar flow in channels with porous walls at high suction Reynolds number. J. Appl. Phys., 26(4), 489–490 (1955)zbMATHCrossRefGoogle Scholar
  5. [5]
    Yuan, S. W. Further investigations of laminar flow in channels with porous walls. J. Appl. Phys., 27(3), 267–269 (1956)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Wallace, W. E., Pierce, C. I., and Swayer, W. K. Technical Report TN23, US Bureau of Mines (1969)Google Scholar
  7. [7]
    Rudraiah, N., Ramaiah, B. K., and Rajasekhar, B. M. Hartmann flow over a permeable bed. Int. J. Engng. Sci., 13(1), 1–24 (1975)zbMATHCrossRefGoogle Scholar
  8. [8]
    Beavers, G. S. and Joseph, D. D. Boundary conditions at a naturally permeable wall. J. Fluid Mech., 30(1), 197–207 (1967)CrossRefGoogle Scholar
  9. [9]
    Richardson, S. A model for the boundary condition of a porous material-Part 2. J. Fluid Mech., 49(2), 327–336 (1971)zbMATHCrossRefGoogle Scholar
  10. [10]
    Rajasekhar, B. M. Experimental and Theoretical Study of Flow of Fluids Past Porous Media, Ph. D. dissertation, Banglore University (1974)Google Scholar
  11. [11]
    Rudraiah, N. and Veerbhadraiah, R. Temperature distribution in Couette flow past a permeable bed. Proceedings Mathematical Sciences, 86(6), 537–547 (1977)Google Scholar
  12. [12]
    Darcy, H. Les Fountains Publique De La Ville De Dijon, Delmont, Paris (1856)Google Scholar
  13. [13]
    Van Lankveld, M. A. M. Validation of Boundary Conditions Between a Porous Medium and a Viscous Fluid, Eindhoven University of Technology (1991)Google Scholar
  14. [14]
    Srivastava, A. C. Flow of a second-order fluid through a circular pipe and its surrounding porous medium. Bulletin Gauhati University Mathematics Association, 3, 1–8 (1996)Google Scholar
  15. [15]
    Singh, R. and Lawrence, L. Influence of slip velocity at a membrane surface on ultra-filtration performance-II (tube flow system). International Journal of Heat and Mass Transfer, 22(5), 731–737 (1979)zbMATHCrossRefGoogle Scholar
  16. [16]
    Pal, D., Veerabhadraiah, R., Shivakumar, P. N., and Rudraiah, N. Longitudinal dispersion of tracer particles in a channel bounded by porous media using slip condition. Int. J. Math. Sci., 7(4), 755–764 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Khan, M., Hayat, T., and Wang, Y. Slip effects on shearing flows in a porous medium. Acta Mechanica Sinica, 24(1), 51–59 (2008)CrossRefMathSciNetGoogle Scholar
  18. [18]
    Makinde, O. D. and Osalusi, E. MHD flow in a channel with slip at the permeable boundaries. Romania Journal of Physics, 51(3), 319–328 (2006)Google Scholar
  19. [19]
    Ganesh, S. and Krishnambal, S. Magnetohydrodynamic flow of viscous fluid between two parallel porous plates. Journal of Applied Sciences, 6(11), 2420–2425 (2006)CrossRefGoogle Scholar
  20. [20]
    Chandrasekhara, B. D. and Rudraiah, N. MHD flow through a channel of varying gap. Indian Journal of Pure and Applied Mathematics, 11(8), 1105–1123 (1980)zbMATHMathSciNetGoogle Scholar
  21. [21]
    Shivakumar, P. N., Nagaraj, S., Veerabhadraiah, R., and Rudraiah, N. Fluid movement in a channel of varying gap with permeable walls covered by porous media. Int. J. Engng. Sci., 24(4), 479–492 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Sparrow, E. M. and Cess, R. D. Magnetohydrodynamic flow and heat transfer about a rotating disc. J. Appl. Mech., 29, 181–187 (1962)MathSciNetGoogle Scholar
  23. [23]
    Roberts, P. H. An Introduction to Magnetohydrodynamics, Longmans Publications, London (1967)Google Scholar
  24. [24]
    Langlois, W. F. Creeping viscous flow through a two dimensional channel. Proc. Third U.S. Nat. Cong. Appl. Mech., 777–783 (1958)Google Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsSri Krishna College of Engineering and TechnologySugunapuram, Kuniamuthur, CoimbatoreIndia
  2. 2.Department of Mathematics, Amirta School of EngineeringAmirta Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations